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1 Introduction

In previous talks at this conference, we have heard a lot about quartz fiber calorime-
ters. These detectors have many interesting properties indeed. However, excellent
energy resolution does not seem to be one of those properties. Yet, I will try to con-
vince you that the application of quartz fibers may bring substantial improvements to
a variety of aspects of hadron calorimetry, including measurement of the energy of
hadron showers with unprecedented accuracy.

Before elaborating on this point, I will first briefly review the various factors con-
tributing to and limiting the performance of calorimeters.

From: Proceedings of the 7th CALOR conference, Tucson 1997



Another excerpt from the Tucson proceedings

In these practical situations, the dual-readout systems discussed here might well
offer a major improvement compared to classical calorimeters. The signal contri-
butions of neutrons are of little importance in this case. The dual-readout system
provides a measurement of the energy and of the nature of this energy in the (small)
volume available for the measurement. Because of this additional information, the
precision of the results obtained in this way is very likely to rival that obtainable with
one type of readout in a considerably larger detector volume.

I am convinced that resources for a dedicated R&D program to investigate these
possibilitics may turn out to be extremely well spent.






How to improve hadron calorimeter performance?

Compensation

e Design a calorimeter so that e/h = I.
This works ONLY in sampling calorimeters

e In sampling calorimeters, different classes of shower particles may be sampled

very differently.
In the em component, electrons and positrons are sampled according to dE/dx”™

In the non-em component, neutrons produced in nuclear breakup may be

sampled MUCH (10 - 100 times) more efficiently, when the active calorimeter
medium contains hydrogen. There is no competition for elastic n-p scattering in that case

o The total kinetic neutron energy is correlated with the invisible energy loss,
especially in high-Z materials

e Choose amplification factor for neutron signals such that it compensates for

the invisible energy losses: e/h = 1
Amplification factor is determined by the sampling fraction for charged shower particles:

e.g.~2% for Pb/plastic scintillator, ~6% for Ul/plastic scintillator

* Sampling of soft shower photons depends on Z value absorber — e/mip typically < 1
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Pros & Cons of Compensating Calorimeters

Pros
® Same energy scale for electrons, hadrons and jets. No ifs, ands or buts.

® Calibrate with electrons and you are done.
® Excellent hadronic energy resolution (SPACAL: 30%/\/E).
® Linearity, Gaussian response function and all that good stuff.

® Compensation fully understood.
We know how to build these things, long before GEANT

Cons

® Small sampling fraction (2.4% in Pb/plastic)
—> em energy resolution limited (SPACAL: 13%/\VE, ZEUS: 18%/ VE)

® Compensation relies on detecting neutrons
— Large integration volume
—> Long integration time (~50 ns)

e Jet resolution not as good as for single hadrons in Pb,U calorimeters



What is the problem with the jet energy resolution?
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What is the problem with the jet energy resolution?
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A copper or iron based calorimeter would be much better in that respect



Elements needed to improve the excellent ZEUS/SPACAL performance:

1) Reduce the contribution of sampling fluctuations to energy resolution
(THE limiting factor in SPACAL/ZEUS)

2) Use lower-Z absorber material *
to eliminate / reduce the jet problems

3) Maintain advantages of compensation
(eliminate / reduce effects of fluctuations in fo, and invisible energy)

—>» Dual-Readout Calorimetry

* This may also reduce the weight and volume of the calorimeter






An attractive option for improving the quality of hadron calorimetry:

Use Cerenkov light!! Why?

em component (1°)

Hadron showers < non-em component (mainly soft p)

Calorimeter response to these components not the same (¢//2 # 1)

Cerenkov light almost exclusively produced by em component
(~80% of non-em energy deposited by non-relativistic particles)

= DREAM (Dual REAdout Method) principle:
Measure f,,, event by event by comparing C and dE/dx signals



This idea needed EXPERIMENTAL confirmation

(Monte Carlo simulations of hadron shower development not very reliable in 1997 )

In came NASA, with the ACCESS project *

Detection of very-high-energy (up to the PeV regime) cosmic rays, at the ISS
Needed a calorimeter with large aperture, modest energy resolution (~10%),
but most importantly, a SMALL MASS (< 2 nuclear interaction lengths)

The properties of such a calorimeter are completely dominated by leakage fluctuations

Unless you get a handle on that leakage, event-by-event, no good performance expected

Dual-readout may help, as follows:

In the first nuclear interaction some fraction of the energy goes into 7° production
If that fraction is large — relatively little leakage —relatively large signal

If that fraction is small — relatively much leakage —relatively small signal
The C/S signal ratio tells how large that fraction is!!

Does it work in practice?

* This project was canceled in 2003, after the accident with the Columbia Space Shuttle



The ACCESS dual-readout calorimeter

Absorber: 39 Pb plates, 6.4 mm thick (1.4 ANy total depth)
Active: alternating ribbons of plastic scintillator, quartz

Tested with high-energy (up to 375 GeV) pions at CERN




Quartz signal
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Abstract

Cosmic ray experiments outside the Earth’s atmosphere are subject Lo very severe restrictions on the mass of the
instruments. Therefore, it is important that the experimental information that can be obtained per unit detector mass is
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2.5 mm-

~— 4 mm——-

The DREAM calorimeter

Basic building block:2 m long copper rod, with a 4 x 4 mm? cross section
with a 2.5 mm central hole in it.

In this hole were inserted 7 optical fibers, 3 scintillating, 4 undoped
(quartz in the central region of the detector, PMMA in the periphery)

The calorimeter consisted of 5,130 such rods, arranged in a pattern
of 19 hexagonal cells

The fibers from each cell were
split into 2 bunches, for the S
and C fibers. Each bunch was

connected to a PMT,
so that there were

thus 2x 19 =38 signals
recorded for every
shower developing

in this instrument

Total fiducial detector mass was 1,030 kg
(cf SPACAL was ~20,000 kg)



The first DREAM paper, and the first surprise
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DREAM: How to determine [, and E7
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Effects of C/S corrections on

hadronic signal linearity and  jet resolution
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Figure 9: The scintillator response of the DREAM calorimeter to single pions (a) and the energy resolution for
“jets” (D), before and after the dual-readout correction procedures were applied to the signals [5].



How to improve DREAM performance

e Build a larger detector — reduce effects side leakage

e Increase Cerenkov light yield
DREAM: 8 p.e./GeV — fluctuations contribute 35%/VE

e Reduce sampling fluctuations
These contributed ~ 40%/\/E to hadronic resolution in DREAM

1o study these issues, the RD52 Collaboration was formed (2006)
TTU, ISU (from the USA), Pavia, Pisa, Roma, Cosenza, Cagliari (Italy)



Homogeneous calorimeters (crystals)

e No reason why DREAM principle should be limited to fiber calorimeters

e (Crystals have the potential to solve light yield + sampling fluctuations problem
e HOWEVER: Need to separate the light into its C, S components

OPTIONS:
1) Directionality. S light is isotropic, C light directional
2) Time structure. C light is prompt, S light has decay constant(s)

3) Spectral characteristics. C light A2, S light depends on scintillator

4) Polarization. C light polarized, S light not.



Separation of PbWO4 :1%Mo signals into S, C components
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Cerenkov and Scintillator information from one signal !
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How to improve DREAM performance

e Build a larger detector —— reduce effects side leakage

o Increase Cerenkov light yield
DREAM: 8 p.e./GeV — fluctuations contribute 35%/VE

o Reduce sampling fluctuations
These contributed ~ 40%/ \/E to hadronic resolution in DREAM

e For ultimate hadron calorimetry (15%/\/E): Measure Ey;, (neutrons)
Is correlated to nuclear binding energy loss (invisible energy)

Can be inferred from the time structure of the signals



Time structure of the DREAM signals: the neutron tail
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Probing the total signal distribution with the neutron fraction
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The first copper module

20+

8 S + 204

0/6/06/060e0lelOlé

Fiber pattern

8 C fibers




The RDS5?2 fiber calorimeter
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The RD52 test area in the HS beam line
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Principles of dual-readout calorimetry (1)
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Principles of dual-readout calorimetry (3)
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Hadron results obtained with a dual-readout fiber calorimeter
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A crucial feature: No longitudinal segmentation

e Advantages:

- Compact construction
- No intercalibration of sections needed
- Calibrate with electrons and you are done

® Possible disadvantages:
- Dealing with pile-up (not an issue at ILC)

- Pointing for neutral particles
- Electron ID

However, a fine lateral granularity can do wonders
In addition:

® Time structure of the signals can provide crucial depth information



Depth of the light production

and the starting point of the PMT signals
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Use starting time PMT signal to determine the depth
of the light production and thus identify particle
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Methods to distinguish e/m in longitudinally unsegmented calorimeter

Lateral shower profile
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Correlation with invisible energy (100 GeV pion showers)

dual readout compensation
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Limit on the hadronic energy resolution (%)

Lower limits on hadronic energy resolution
(MC results described in: NIM A882 (2018) 148)

Energy (GeV) —>
10 20 50 100 500 co 10 20 50 100 500 ©o
8 I I I I 1 1 l 1 1 ll i 8 | I I ] ] 1 I 1 LIL] I
[ ® Dual readout | 1 | ¢ Dual readout |
7t v Compensation | ] 7L% v Compensation | -
\'\ : [
6F 4 6 <)
; Cu absorber | | -3 Pb absorber
_ ‘o, 1 Za
#l I N 5 B
£ |
\{ Fs "
40, 1 4f .
.., i 33
< %/
3| 195 1 3l
o
~
~ S v
2 ™ b ~ e - 2 -
LIS
e
1t a) ) \ 4 1F b)
_ 3.1 |
0-....1....[....1....1....1..,.1....~ O..,..l....

038 03 025 02 0.15 0.1 0.05 0 0.3 0.3 025 02 0.15 0.1 0.05 0

~— I/VE (GeV)



DUAL-READOUT CALORIMETRY

e Dual-readout Method (DREAM):

Simultaneous measurement of scintillation light (dE/dx) and Cerenkov light
produced in shower development makes it possible to measure the em fraction of
hadron showers event by event.

The effects of fluctuations in this fraction on the calorimeter performance can thus
be eliminated

e This method exploits the fact that the (e/h) values of a sampling calorimeter based
on scintillation light and Cerenkov light are very different (e.g. protons from the h
component contribute to the S, but not to the C signals)

® [n this way, the same advanges are obtained as jfor intrinsically compensating
calorimeters (e/h = 1), WITHOUT the limitations (sampling fraction, integration
volume, time)

- Correct hadronic energy reconstruction, in an instrument calibrated with electrons

- Linearity + excellent energy resolution for hadrons & jets
- Gaussian response functions
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Selected publications on dual-readout calorimetry

The beginning of Dual-Readout Calorimetry:

e Quartz Fibers and the Prospects for Hadron Calorimetry at the 1% Resolution Level,

R. Wigmans, Proceedings of the 7" International Conference on Calorimetry in
High Energy Physics, Tucson (AZ), Nov. 9-14, 1997.

Selected papers in the refereed literature:

e Beam Tests of a Thin Dual-Readout Calorimeter for Detecting Cosmic Rays Outside the Earth’s Atmosphere,
V. Nagaslaev, A. Sill and R. Wigmans, Nucl. Instr. and Meth. A462 (2001) 411-425.

e Muon Detection with a Dual-Readout Calorimeter,
N. Akchurin et al., Nucl. Instr. and Meth. A533 (2004) 305-321.

e Hadron and Jet Detection with a Dual-Readout Calorimeter,
N. Akchurin et al., Nucl. Instr. and Meth. A537 (2005) 537 — 561.

e Dual-Readout Calorimetry with Crystal Calorimeters,
N. Akchurin ef al., Nucl. Instr. and Meth. A598 (2009) 710 - 721,

e Particle identification in the longitudinally unsegmented RD52 calorimeter,
N. Akchurin et al., Nucl. Instr. and Meth. A735 (2014) 120 - 129.

e The electromagnetic performance of the RD52 fiber calorimeter,
N. Akchurin et al., Nucl. Instr. and Meth. A735 (2014) 130 - 144.

e Lessons from Monte Carlo simulations of a dual-readout fiber calorimeter,
N. Akchurin et al., Nucl. Instr. and Meth. A762 (2014) 100 - 118.

e Hadron detection with a dual-readout fiber calorimeter,
S. Lee et al., Nucl. Instr. and Meth. A866 (2017) 76 - 90.

e On the limit of the hadronic energy resolution of calorimeters,
S. Lee, M. Livan and R. Wigmans, Nucl. Instr. and Meth. A882 (2018) 148 - 157,

e Dual-readout calorimetry,

— Lee, M. Livan and R. Wigmans, Rev. Mod. Phys. 90 (2018) 025002. e

e New Developments in Calorimetric Particle Detection,
R. Wigmans, J. Progr. Part. Nucl. Phys. 103 (2018) 109 - 161






DREAM: Structure

—2.5 mm-
~— 4 mm——-

e Some characteristics of the DREAM detector

- Depth 200 cm (10.0 Ajyt)

Effective radius 16.2 cm (0.81 Aint, 8.0 pyr)

Mass instrumented volume 1030 kg

Number of fibers 35910, diameter 0.8 mm, total length &~ 90 km

Hexagonal towers (19), each read out by 2 PMTs



DREAM readout
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Electron detection with a Cu-fiber DR calorimeter

Thanks to shower profile characteristics, it is also possible
to recognize electrons inside a jet if lateral granularity is adequate

This plot represents a measurement with a calorimeter with a
lateral cross section of 1.2 x 1.2 cm? (0.4 x 0.4 py?)
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Use depth of light production to correct for light attenuation
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for MLP > 0.17 : 99.81% electron ID

Neural network analysis 60 GeV e/t separation
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