The impact of crystal light yield non-proportionality on a typical calorimetric space experiment.

A paper including the details of this work was recently submitted on JINST.
Space detector for cosmic rays (CR).

- Direct CR detection in the multi-TeV region is relevant for:
 - dark matter models (electron, positron...),
 - CR sources nearby the Earth (electron, positron...),
 - acceleration, propagation models (protons, nuclei...).
 - ...

- Spectrometers (AMS-02, PAMELA, ...):
 - Limited acceptance and M.D.R. → particle energy < ~TeV

- Recent calorimetric experiment:
 - Large acceptance → high energy region
 - Current experiment: DAMPE, CALET, Fermi-LAT...
 - Future experiment: HERD (2027).
Disagreement among experiments.

Electron+positron flux

Oxygen flux

Understand the reason of the discrepancies for a correct interpretation of the data and for designing future experiments.
Main idea of this work.

- Calorimeters are typically made with inorganic scintillating crystals.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Material</th>
<th>Electromagnetic depth (X_0)</th>
<th>Hadronic depth (λ_I)</th>
<th>Launch year</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALET</td>
<td>PWO</td>
<td>27</td>
<td>1.2</td>
<td>2015</td>
</tr>
<tr>
<td>DAMPE</td>
<td>BGO</td>
<td>32</td>
<td>1.6</td>
<td>2015</td>
</tr>
<tr>
<td>FERMI</td>
<td>CsI(Tl)</td>
<td>8.6</td>
<td>0.4</td>
<td>2008</td>
</tr>
<tr>
<td>HERD</td>
<td>LYSO</td>
<td>55</td>
<td>3.0</td>
<td>2027 (expected)</td>
</tr>
</tbody>
</table>

- Possible systematic effect is due to the non proportional light response of the crystals.
- The scintillation light yield depends on dE/dx.
- Minimalist approach: two phenomena are considered.
Minimalist approach: “Birks” (1).

- At high excitation density the quenching (or Birks) effect is dominant.
- Assuming a division of the energy deposition into cylindrical "core" and "halo" regions surrounding the particle trajectory

\[
L'_B = \frac{1 - \eta_H}{1 + B(1 - \eta_H) \times \frac{dE}{dx}} + \eta_H
\]

Birks parameter

Fraction of carries escaped to the halo region
Minimalist approach: “Onsager” (2).

- At low excitation density another phenomenon can be dominant. A fraction of initial electrons and holes that do not form excitons can combine if they are closer than the Onsager radius can combine to form excitons.

\[L_O = 1 - \eta_{e/h} \exp \left(-\frac{(dE/dx)}{(dE/dx)_O} \right) \]

- Fraction of initial electrons and holes that do not form excitons.
- Strength of the Onsager term.
Minimalist approach and MC simulation.

- Combining the modified Birks and Onsager mechanisms the relative luminosity efficiency is:

\[
L = \left[1 - \frac{\eta_e}{h} \exp \left(- \frac{(dE/dx)}{(dE/dx)_O} \right) \right] \times \left[\frac{1 - \eta_H}{1 + B (1 - \eta_H) \times \frac{dE}{dx}} + \eta_H \right].
\]

- To study the dE/dx in different materials, FLUKA simulation of particle showers is employed.
- Minimum energy threshold: 1 keV for electrons and 100 eV for photons.
- All the physical processes that can contribute to the amount of ionisation are activated.
MIP energy deposit density.

- For every bin of ionisation density, the amount of the energy released is provided by the simulation.

Helium/proton light singal ratio is different from 4.

It will be less or greater than 4 for silicate or alkali scintillator respectively.
Material characterization with nuclei

- The usual ways to study the scintillator non proportionality are Compton electrons, photon response.
- Here the ionization produced by high energy nuclei is used:
 - Technique already exploited by: FERMI, DAMPE, ...

Results of FLUKA simulation for LYSO crystals

Ionization range:
5 MeV/cm – 2 GeV/cm
CaloCube project and prototype.

- CaloCube was a 4 years R&D activity aiming to optimize the design of a wide-acceptance, 3-D imaging calorimeter to be operated in space
- Main application of CaloCube idea → HERD (2027)

2015: prototype made of CsI(Tl) crystals read-out with photo-diodes tested with nuclei at CERN (SPS)

PDs: VTH2090.
Electronics: CASIS chip.
Different crystals tested with nuclei.

- A tray was loaded with cubic crystals made of different scintillator materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Size (cm)</th>
<th>(\rho) (g/cm(^3))</th>
<th>(\lambda_I) (cm)</th>
<th>(X_0) (cm)</th>
<th>(\lambda_{max}) (nm)</th>
<th>(\tau_{decay}) (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGO</td>
<td>2.0</td>
<td>7.1</td>
<td>23</td>
<td>1.1</td>
<td>480</td>
<td>300</td>
</tr>
<tr>
<td>CsI(Tl)</td>
<td>3.6</td>
<td>4.5</td>
<td>40</td>
<td>1.9</td>
<td>550</td>
<td>1220</td>
</tr>
<tr>
<td>LYSO</td>
<td>2.0</td>
<td>7.4</td>
<td>21</td>
<td>1.1</td>
<td>420</td>
<td>40</td>
</tr>
<tr>
<td>YAP</td>
<td>2.2</td>
<td>5.5</td>
<td>22</td>
<td>2.7</td>
<td>370</td>
<td>27</td>
</tr>
<tr>
<td>YAG</td>
<td>2.5</td>
<td>4.6</td>
<td>25</td>
<td>3.5</td>
<td>550</td>
<td>70</td>
</tr>
<tr>
<td>BaF(_2)</td>
<td>3.1</td>
<td>4.9</td>
<td>31</td>
<td>2.0</td>
<td>300</td>
<td>650</td>
</tr>
</tbody>
</table>

Silicon tracker upstream the prototype: it provides the particle impact position and nuclei charge.

With CSI(Tl) crystals, ions that traversed the test crystal without starting a shower are selected.
Nuclei measurement results

Mean value of the signals divided by Z^2

Relative luminosity efficiency

$D_Z = \text{signal (ADC counts)}/Z^2$

Graphs showing relative light yield for CsI(Tl), LYSO, BGO, YAP, and BaF2 as a function of Z.
“Minimalist approach” fit.

The output of the simulation and the luminosity data are used to fit the minimalist model.

This is able to reproduce the experimental trends: χ^2_{red} from 0.64 to 1.64.

<table>
<thead>
<tr>
<th>Material</th>
<th>η_e/h</th>
<th>$(dE/dx)_O$</th>
<th>η_H</th>
<th>$(1/B)$</th>
<th>χ^2_{red}</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGO</td>
<td>0.159 ± 0.033</td>
<td>98 ± 45</td>
<td>0.1884 ± 0.0039</td>
<td>364 ± 42</td>
<td>1.64</td>
</tr>
<tr>
<td>CsI(Tl)</td>
<td>0.326 ± 0.010</td>
<td>34.1 ± 2.8</td>
<td>0.121 ± 0.012</td>
<td>1338 ± 64</td>
<td>0.81</td>
</tr>
<tr>
<td>LYSO</td>
<td>0.758 ± 0.045</td>
<td>164.7 ± 8.4</td>
<td>0.0274 ± 0.0048</td>
<td>45.1 ± 9.1</td>
<td>0.64</td>
</tr>
<tr>
<td>YAP</td>
<td>0.2212 ± 0.0085</td>
<td>90 ± 11</td>
<td>0.174 ± 0.012</td>
<td>873 ± 70</td>
<td>1.24</td>
</tr>
<tr>
<td>YAG</td>
<td>0.0912 ± 0.015</td>
<td>73 ± 29</td>
<td>0.1052 ± 0.0055</td>
<td>462 ± 31</td>
<td>1.23</td>
</tr>
<tr>
<td>BaF$_2$</td>
<td>0.322 ± 0.024</td>
<td>35.8 ± 6.2</td>
<td>0.3440 ± 0.0071</td>
<td>546 ± 36</td>
<td>1.11</td>
</tr>
</tbody>
</table>
Typical space calorimeter simulation.

- Possible systematic effects on space calorimeter energy measurements, simulation:
 - homogeneous cube of 1 m3 LYSO, BGO, CsI.
 - high energy electron and proton shower.
- For a real experiment the effect will depend on:
 - crystal manufacturer,
 - specific geometry and calibration,
 - acquisition system (e.g. integration time)
 - ...
- Here we show the possible existence of systematic effects due to non-proportionality and we can not determine quantitatively these effects for running experiments.
MIP vs electron showers.

- Calorimeter calibrated with non-interacting particle on-orbit.
- Different ionization density profile between MIP and shower.

We assume: calibration with MIP.

Systematic shift of the measured total shower energy with LYSO $\sim -2.3\%$.

Constant with electron energy from 10 GeV to 1 TeV
Systematic error on proton showers.

- The ionization density profile is not constant with proton energy, thus the systematic error does depend on energy.
Impact on electron and proton fluxes.

- **Systematic shift of energy measurement**

<table>
<thead>
<tr>
<th>Material</th>
<th>Electrons</th>
<th>Protons 10 GeV</th>
<th>Protons 100 GeV</th>
<th>Protons 1 TeV</th>
<th>Protons 10 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>LYSO</td>
<td>-2.3%</td>
<td>-7.1%</td>
<td>-5.6%</td>
<td>-4.6%</td>
<td>-3.4%</td>
</tr>
<tr>
<td>BGO</td>
<td>-1.1%</td>
<td>-4.3%</td>
<td>-3.0%</td>
<td>-2.3%</td>
<td>-1.8%</td>
</tr>
<tr>
<td>CsI(Tl)</td>
<td>+0.82%</td>
<td>+2.9%</td>
<td>+2.0%</td>
<td>+1.5%</td>
<td>+1.2%</td>
</tr>
</tbody>
</table>

- **Fluxes affected by the systematic error.**
Conclusion

- CaloCube data and minimalist approach are employed to characterize the non proportionality of scintillators.
- **If the calorimeter response is calibrated with MIP, a effect on the energy measurement of few percents exists.**
- For future experiment, we suggest:
 - to characterize the scintillator material with the flight readout system (e.g. by using high energy nuclei),
 - To estimate the impact of non-proportionality and eventually to implement the effect inside shower simulation.
- About the results published by running experiments, it is not clear if this effect is already included in detector simulation, since it is not mentioned in papers.