Including calorimeter test-beams into geant-val

A. Kiryunin (MPI), D. Konstantinov (IHEP RU), <u>L. Pezzotti</u> (CERN), A. Ribon (CERN), P. Strizenec (SAS)

on behalf on the Geant4 Collaboration

with inputs from ATLAS, CALICE and Dual-Readout Calorimetry Groups

CALOR 2022 19th International Conference on Calorimetry in Particle Physics

University of Sussex, Brighton 16-20 May 2022

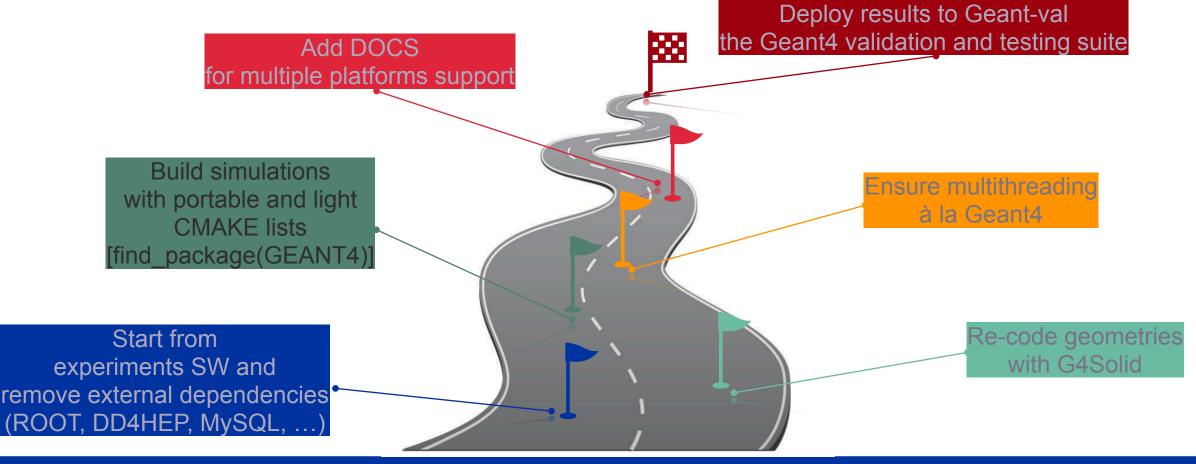
Geant4, latest news

- Geant4 is going to support all the main LHC experiments re-starting with Run3.
 Some recent history:
 - ✤ Run2 (2015-2018) simulations used Geant4 releases from Geant4.9.6 (2012) to Geant4.10.4 (2017) producing $O(10^{11})$ events.
 - To keep stable performance within the same Run, some developments in both hadronic and electromagnetic models were not included in official releases from Geant4.10.2 (2015) to Geant4.10.4 (2017).
 - The main LHC experiments currently use the Geant4-recommended Physics List FTFP_BERT, eventually with variants (e.g. ATLAS adopts FTFP_BERT_ATL).

17/5/2022

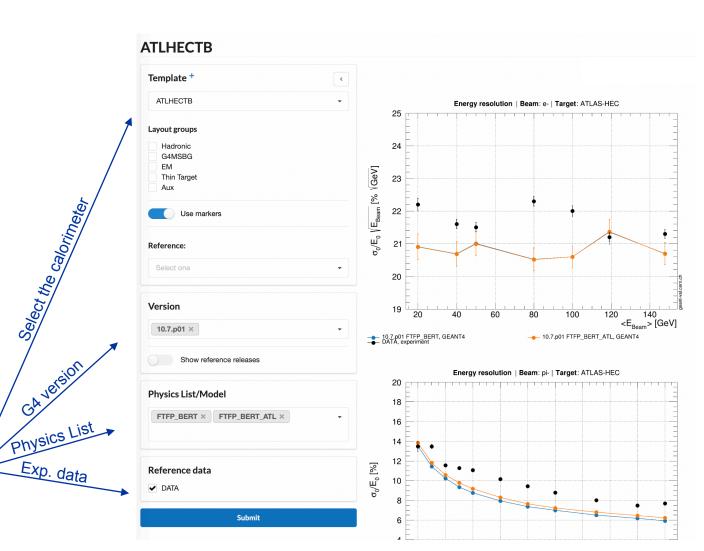
Geant4, latest news

- Geant4 is going to support all the main LHC experiments re-starting with Run3. Some recent history:
 - ✤ Run2 (2015-2018) simulations used Geant4 releases from Geant4.9.6 (2012) to Geant4.10.4 (2017) producing $O(10^{11})$ events.
 - To keep stable performance within the same Run, some developments in both hadronic and electromagnetic models were not included in official releases from Geant4.10.2 (2015) to Geant4.10.4 (2017).
 - The main LHC experiments currently use the Geant4-recommended Physics List FTFP_BERT, eventually with variants (e.g. ATLAS adopts FTFP_BERT_ATL).
- Generating calorimeter showers is the most challenging simulation task:
 - Several hadronic physics models are adopted within a single Physics List with often overlapping ranges of applicability.
 - Still the most computationally heavy tasks in HEP. Geant4-R&D ongoing to parameterize/ generate showers and to offload on GPUs the electromagnetic-shower component [e.g. Adept].


Need new validation studies to foresee the Geant4 performance @Run3

From experiments to geant-val, a winding road

A new Geant4 validation program is testing recent releases on well-established test-beam results from the ATLAS, CALICE and Dual-Readout Calorimetry Collaborations.


Geant-val - geant-val.cern.ch

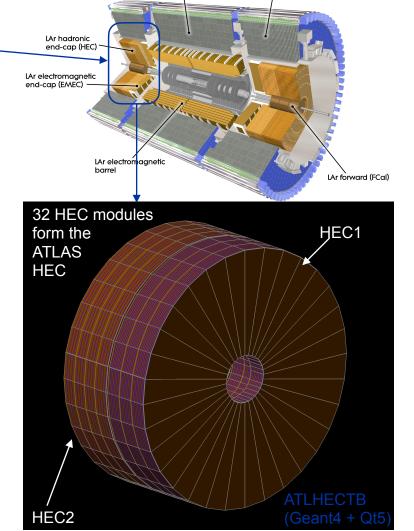
Geant-val is the Geant4 validation and testing suite.

It contains ~40 Geant4 *tests* over several research fields (nuclear physics, HEP, biomedical, ...).

- For the developers, it allows to:
 - Create multiple jobs over beam energies, particle types, physics lists, ..., and automatically submit them on HTCondor(lxplus).
 - Encapsulate variables in json files to later perform the analysis.
- For the HEP Community, it allows to:
 - Deploy results on a common data-base 4 and fetch the information via a web-interface.

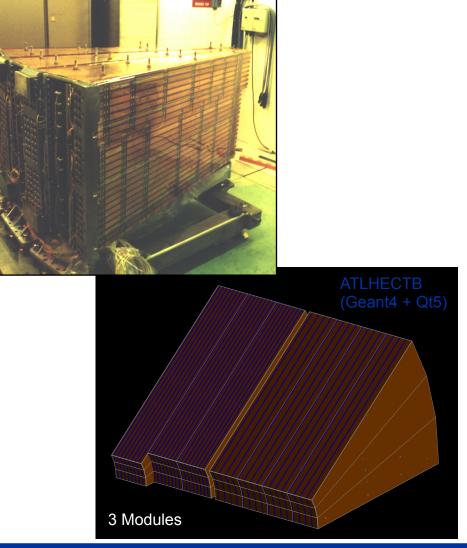
LAr electromagnetic Divided into two wheels (HEC1-2) each consisting of 32 end-cap (EMEC) azimuthal modules.

It uses 8.5-mm-gap LAr sampling regions inserted between parallel copper plates, with 2.5 cm (HEC1) and 5.0 cm (HEC2) thickness.


The ATLAS HEC covers the range $1.5 < |\eta| < 3.2$

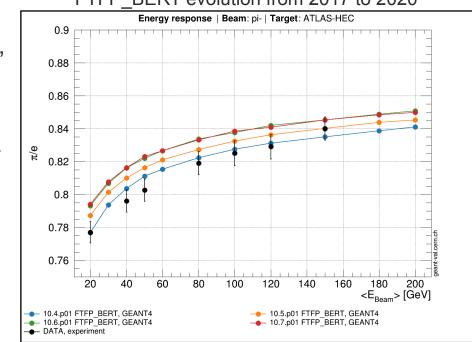
It has four longitudinal layers with a thickness of $\simeq 103X_0$ or $\simeq 9.7\lambda_{int}$.

ATLAS hadronic end-cap calorimeter within G4



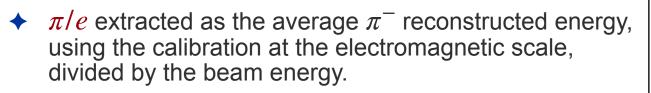
ATLAS hadronic end-cap calorimeter within G4

- ← The ATLAS HEC covers the range $1.5 < |\eta| < 3.2$
- Divided into two wheels (HEC1-2) each consisting of 32 azimuthal modules.
- It uses 8.5-mm-gap LAr sampling regions inserted between parallel copper plates, with 2.5 cm (HEC1) and 5.0 cm (HEC2) thickness.
- It has four longitudinal layers with a thickness of $\simeq 103X_0$ or $\simeq 9.7\lambda_{int}$.
- Beam-tests:
 - Tested in 2000-2001 at CERN-SPS-H6 beam line.
 - Tests performed with 3 ϕ -wedges.
 - ♣ Involving e^- , μ^- and hadrons with $6 \le E_{Beam} \le 200$ GeV.

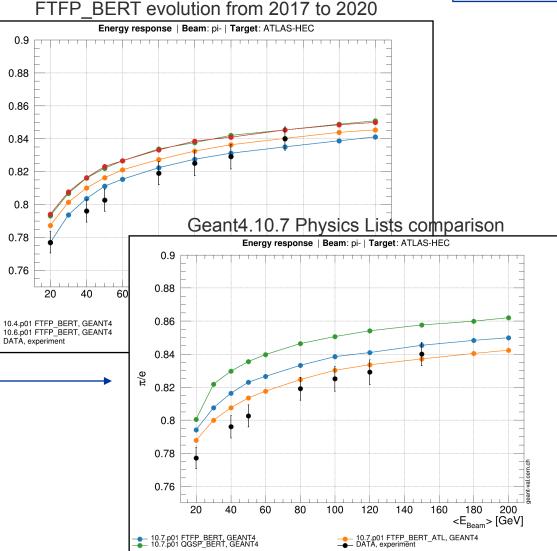


ATLAS HEC: energy response

- π/e extracted as the average π^- reconstructed energy, using the calibration at the electromagnetic scale, divided by the beam energy.
 - FTFP_BERT regression testing:
 - Increase in π observed from Geant4.10.4 (2017) to Geant4.10.6 (2019), driven by inputs from thin target results.
 - FTFP_BERT currently overestimates π of $\simeq 2\%$.

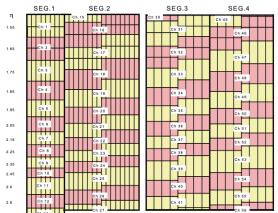


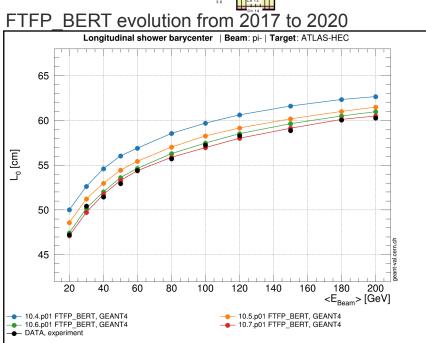
FTFP_BERT evolution from 2017 to 2020



ATLAS HEC: energy response

- FTFP_BERT regression testing:
 - Increase in π observed from Geant4.10.4 (2017) to Geant4.10.6 (2019), driven by inputs from thin target results.
 - FTFP_BERT currently overestimates π of $\simeq 2\%$.
- Geant4.10.7 physics list comparison:
 - Best MC-to-data agreement by FTFP_BERT_ATL (transition region between FTF and BERT is [9,12] GeV, instead of [3,6] GeV).
 - QGSP_BERT is $\simeq 3\%$ higher than FTFP_BERT.

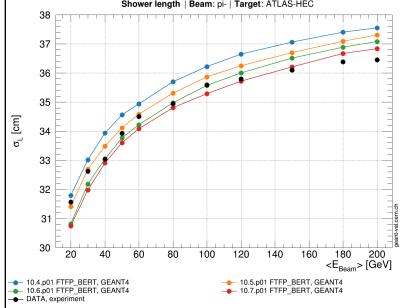

д/e


ATLAS HEC: hadronic shower shape

- The ATLAS HEC is made of 4 longitudinal layers.
- ♦ It is possible to measure the energy profile as the energy fraction deposited in each layer: $F_i = \langle E_i \rangle / E_{sum}, E_{sum} = \Sigma \langle E_i \rangle$
- and the F_i dependence over E_{Beam} .
- Average shower depth:
 - Extracted as the mean (L_0) of the energy profile, as a function of E_{Beam} .
 - ✤ Excellent description ($\simeq 0.1$ %) from Geant4.10.7.

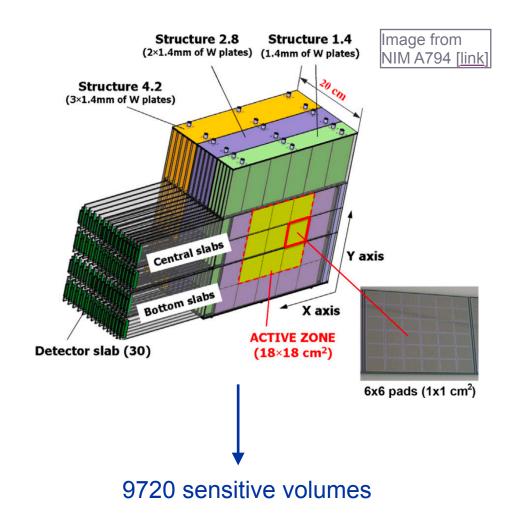
HEC						
longitudinal structure						
HEC	Number of	HEC length		1.85		
layer	LAr gaps	[cm]	$[\lambda_{int}]$	1.95		
1	8	28.05	1.45	2.05		
2	16	53.60	2.75	2.25		
3	8	53.35	2.87	2.35		
4	8	46.80	2.66	2.6		

ATLAS HEC: hadronic shower shape


G4

- The ATLAS HEC is made of 4 longitudinal layers.
- ♦ It is possible to measure the energy profile as the energy fraction deposited in each layer: $F_i = \langle E_i \rangle / E_{sum}, E_{sum} = \Sigma \langle E_i \rangle$
- and the F_i dependence over E_{Beam} .
- Average shower depth:
 - Extracted as the mean (L_0) of the energy profile, as a function of E_{Beam} .
 - ***** Excellent description ($\simeq 0.1~\%$) from Geant4.10.7.
- Average shower length:
 - Extracted as the RMS (σ_L) of the energy profile.
 - Currently within $\pm 2\%$ agreement w.r.t. test-beam data.

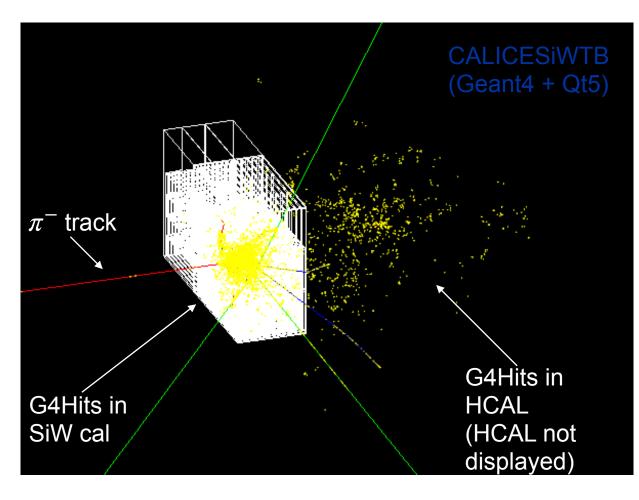
	HEC						
	longitudinal structure						
ſ	HEC	Number of	HEC length		1.85		
	layer	LAr gaps	[cm]	$[\lambda_{int}]$	1.95		
ſ	1	8	28.05	1.45	2.05		
	2	16	53.60	2.75	2.15		
	3	8	53.35	2.87	2.35		
	4	8	46.80	2.66	2.6		



FTFP_BERT evolution from 2017 to 2020 Shower length | Beam: pi- | Target: ATLAS-HEC

CALICE SiW Calorimeter within G4

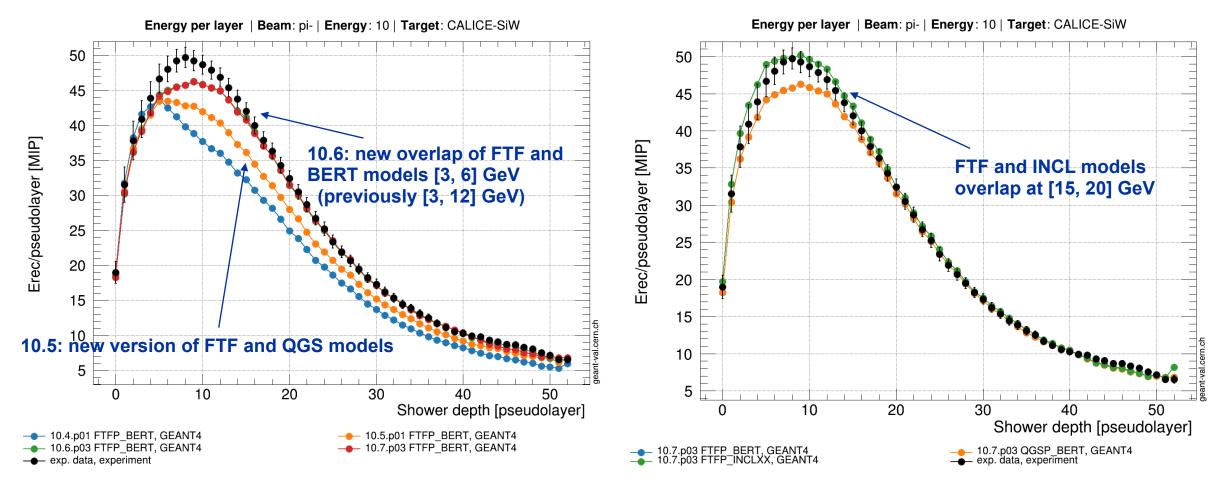
- New highly-granular calorimeters for future Higgs factories by CALICE provide unprecedented shower sampling capabilities, thus enabling superior Geant4 validation.
- The CALICE SiW calorimeter features:
 - * 30 longitudinal layers (silicon + tungsten) with a total thickness of $24X_0$ ($\simeq 1\lambda$),
 - each silicon layer readout by 36×9 Si-cells,
 - with an active area of 18×18 cm².
- Simulation recently ported by CERN EP-SFT to a standalone Geant4 application for internal validation.


Tagging nuclear breakup events

- Beam tests performed at FNAL in 2008 involving
 2, 4, 6, 8 and 10 GeV π⁻ studying the first development stages of hadronic showers.
- Energy depositions in each cell calibrated in MIP units (extracted with μ^- runs).
- Events with a single nuclear breakup are tagged as those with:
 - \clubsuit three consecutive layers measuring $\,>8$ MIP, or

•
$$\frac{E_i + E_{i+1}}{E_{i-1} + E_{i-2}} > 6$$
 MIP and $\frac{E_{i+1} + E_{i+2}}{E_{i-1} + E_{i-2}} > 6$ MIP

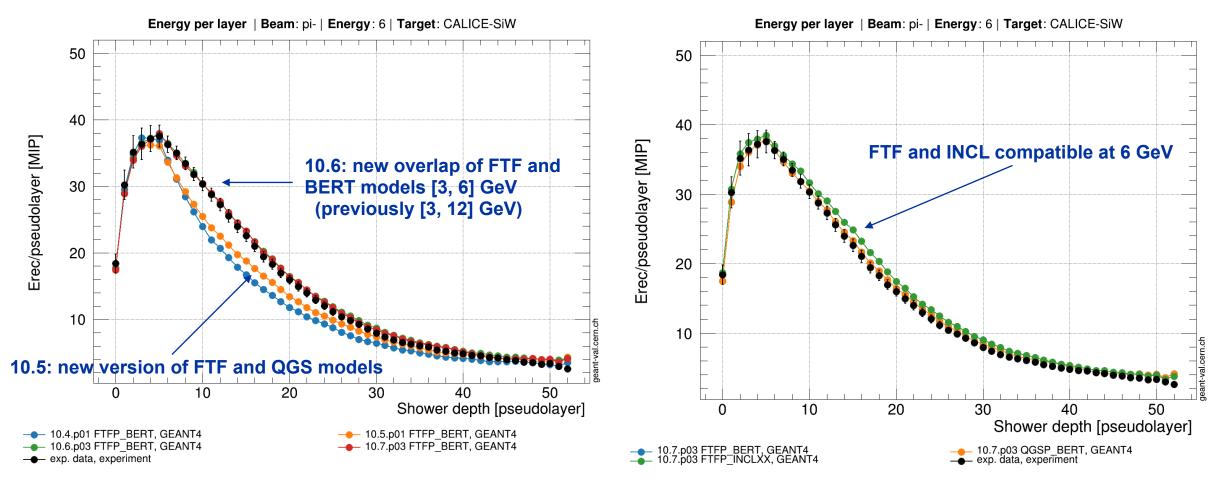
 Starting from the first-interaction layer, it is possible to measure the longitudinal energy (or hit) distributions, as a function of the beam energy, regardless of the depth of the first interaction.



CALICE SiW: Iongitudinal energy distributions

G4

10 GeV π^- , exp. data from NIM A796


FTFP_BERT Physics List regression testing 2017-2020

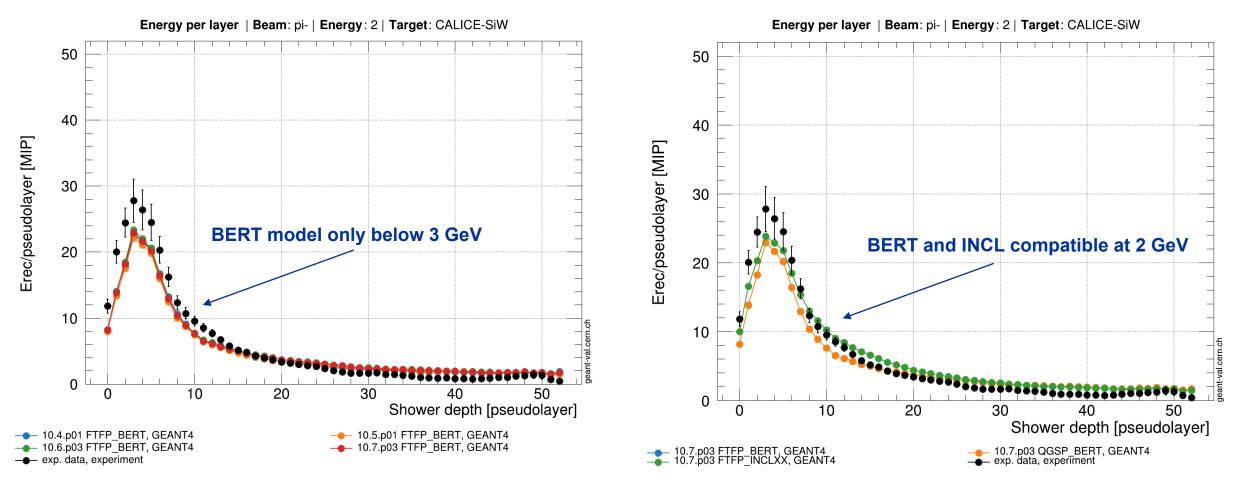
Physics Lists comparison - Geant4.10.7.p03

CALICE SiW: Iongitudinal energy distributions

6 GeV π^- , exp. data from NIM A796

FTFP_BERT Physics List regression testing 2017-2020

Physics Lists comparison - Geant4.10.7.p03


17/5/2022

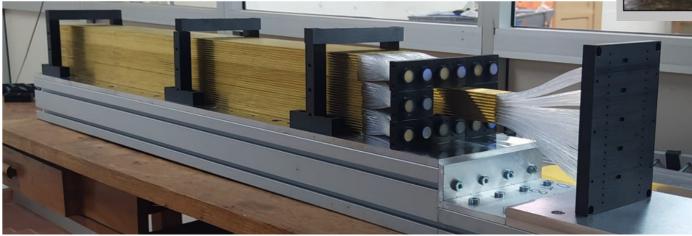
CALICE SiW: Iongitudinal energy distributions

G4

2 GeV π^- , exp. data from NIM A796

FTFP_BERT Physics List regression testing 2017-2020

Physics Lists comparison - Geant4.10.7.p03



Full prototype - 9 towers

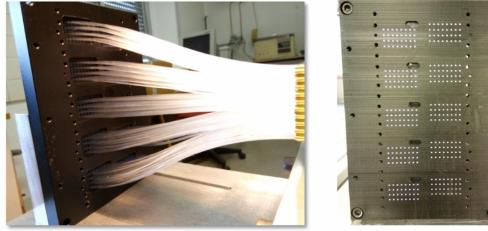
The Bucatini Dual-Readout Calorimeter within Geant4

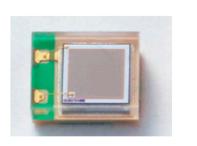
- The new capillary-tube-based dual-readout prototype features:
 - EM dimensions of $10 \times 10 \times 100$ cm³, $\simeq 90\%$ em containment.
 - ✤ 9 towers, each containing 16 × 20 capillaries (160 Cherenkov and 160 Scintillating).
 - Brass capillary tube outer diameter of 2 mm and inner diameter of 1.1 mm. 1-mm-thick fibers.

Prototype rear end

M6 M7 M8 A single tower $M4 M \emptyset M5$ M1 M2 M 3

More details in R. Santoro [talk] at this Conference.




Towards superior Geant4 EM validation

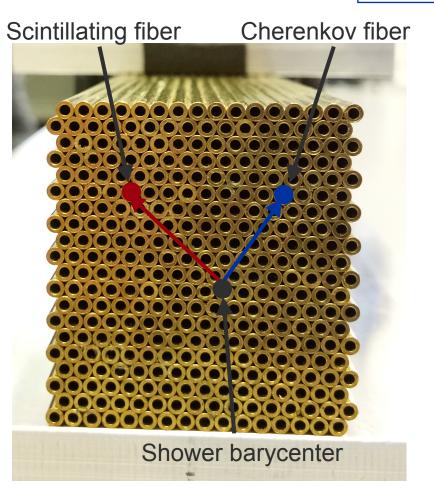
- Superior granularity achieved using a hybrid readout system:
 - 320 SiPMs in the central tower independently read-out using
 - ✤ 5 FEE readout boards, operated in self-trigger mode.
 - Surrounding 8 towers read-out by two PMTs per tower providing an independent Cherenkov and Scintillation light readout.

Fiber-to-SiPM guiding system



Hamamatsu SiPM: S14160-1315 PS Cell size: $15 \ \mu m$

Front end board housing 64 SiPM

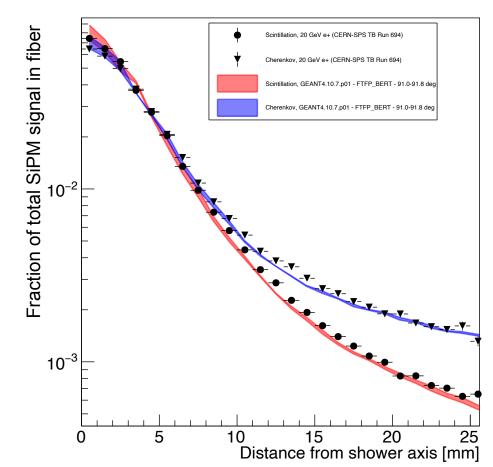


17/5/2022

Dual-Readout Calorimeter: *e*⁺ **shower shape**

- ← Tested with e^+ beam at CERN-SPS-H8 beam line with energies 10-125 GeV (highly affected by π^+ contamination).
- Lateral profile, *i.e.* the average signal carried by a fiber located at a distance *r* from the shower barycenter.
- Measurement:
 - For every event, and for every fiber we populate a scatter plot (signal vs. distance).
 - Lateral profiles are extracted as average values for every x-bin.

More details on SiPM calibration in R. Santoro [talk] at this Conference.



We would like to thank the IDEA Dual-Readout Group for granting early access to unpublished data.

Dual-Readout Calorimeter: *e*⁺ **shower shape**

- Tested with e^+ beam at CERN-SPS-H8 beam line with energies 10-125 GeV (highly affected by π^+ contamination).
- Lateral profile, *i.e.* the average signal carried by a fiber located at a distance *r* from the shower barycenter.
- Measurement:
 - For every event, and for every fiber we populate a scatter plot (signal vs. distance).
 - Lateral profiles are extracted as average values for every x-bin.

CERN SPS 20 GeV e^+ - GEANT4

G4

- GEANT4 needs experiments and experiments need Geant4.
- CERN EP/SFT recently validated new Geant4 releases in close contact with ATLAS, CALICE and Dual-Readout Calorimetry Groups.
- Future activity will tackle the inclusion of the ATLAS Tile Calorimeter, a CALICE hadronic-calorimeter and the future Dual-Readout Calorimetry test-beam results into geant-val.
- ◆ Geant-val is an open project to assist developers in large validation campaigns while distributing results to the HEP Community
 → anyone is invited to try it out!
- Consider collaborating with Geant4 for next validation studies [Alberto.Ribon@cern.ch - lorenzo.pezzotti@cern.ch]

