

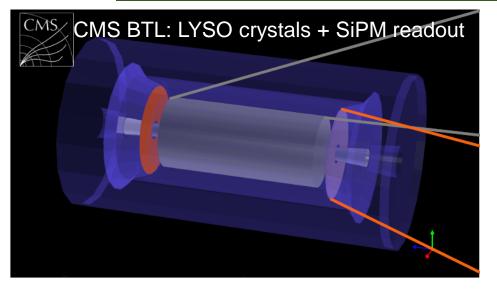
Novel Ultrafast Lu₂O₃:Yb Ceramics for Future HEP Applications

Chen Hu, Liyuan Zhang and Ren-Yuan Zhu

California Institute of Technology

Lakshmi Soundara Pandian, Yimin Wang and Jaroslaw Glodo

Radiation Monitoring Devices Inc.


May 17, 2022

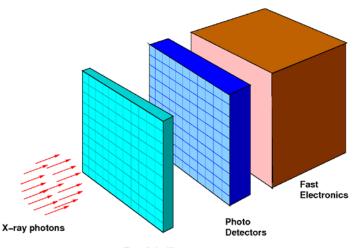
Presented in the CALOR 2022 Conference, University of Sussex, UK

Application of Ultrafast Crystals

Figures of merit for TOF: light yield in the 1st ns & the ratio between fast and total

Mu2e-I: 1,348 CsI of 34x34x200 mm³ Mu2e-II: 1,940 BaF₂:Y

MANKKKE


Mu2e-II: arXiv:1802.02599

Concept of an ultrafast crystal-based front imager proposed for future Free-Electron Laser facilities

RMD

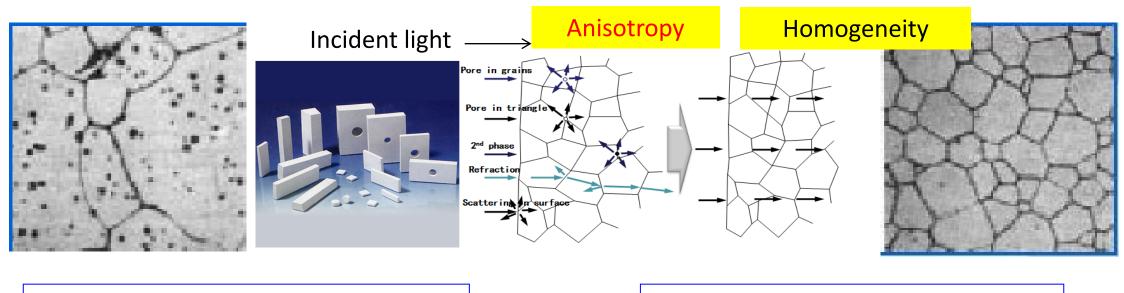
A Dynasil Company

GHz Hard X-ray Imaging for Free-Elec	tron Lasers	Fast frame rate & hard x-ray require ultrafast crystals						
Performance	1	ype I imager	Type II imager					
X-ray energy		up to 30 keV	42-126 keV					
Frame-rate/inter-frame time	0	.5 GHz / 2 ns	3 GHz / 300 ps					
Number of frames per burst		≥ 10	10 - 30					
X-ray detection efficiency		above 50%	above 80%					
Pixel size/pitch		≤ 300 μm < 300 μm						
Dynamic range		10 ³ X-ray	≥ 10 ⁴ X-ray					
	Phot	ons/pixel/frame	Photons/pixel/frame					
Pixel format	64 × 64ª	(scalable to 1 Mpix)	1 Mpix					

Fast Scintillator Screen

Why Scintillating Ceramics

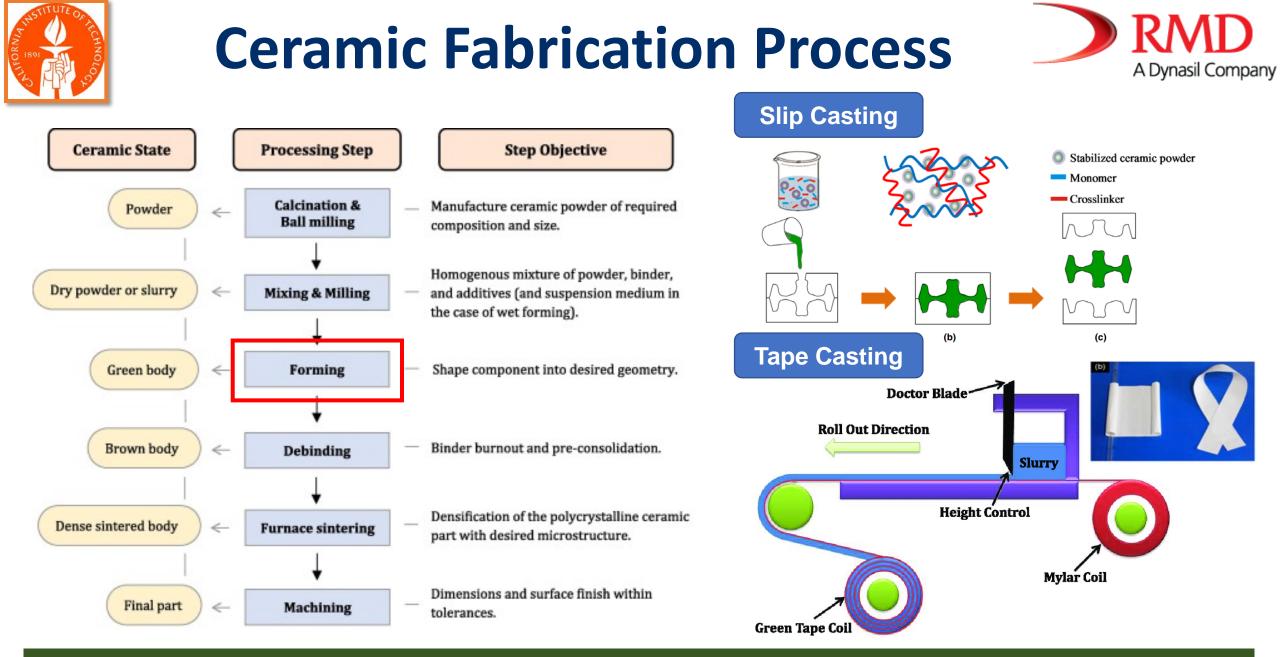
- Ceramics provide a cost-effective solution for future HEP experiments.
 - Simple production technology;
 - High raw material usage;
 - Minimum after-growth mechanical processing.
- Unlike single crystal, ceramic fabrication does not require melting raw material.
 - Lower sintering temperature;
 - Dopants distribute homogeneously without segregation process;
 - Can be made into complex structure.


Cubic Structure Ceramics can be Transparent

		Crystal		Density	
Material	Form ^a	system ^b	Transparency	(g/cm ³)	
Y1.34Gd0.6Eu0.06O3	С	С	Transparent	5.92	
Gd ₂ O ₂ S:Pr,Ce,F	С	н	Translucent	7.34	
Gd ₃ Ga ₅ O ₁₂ :Cr,Ce	С	С	Transparent	7.09	
BaHfO ₃ :Ce	С	С	Opaque	8.35	

Cost-effective transparent ceramics are pursued by industry

Crystal system: C = cubic; H = hexagonal; M = monoclinic.


Annu. Rev. Mater. Sci. 1997. 27:69-88

Opaque or translucent

Transparent

A Dynasil Company

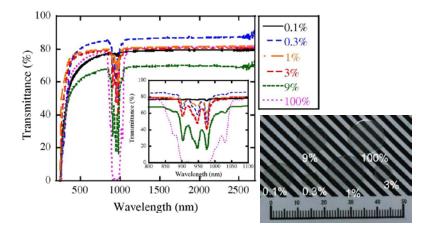
Complex structure (rod, dome, sandwich etc.) can be fabricated with minimum after-growth processing

5/17/2021

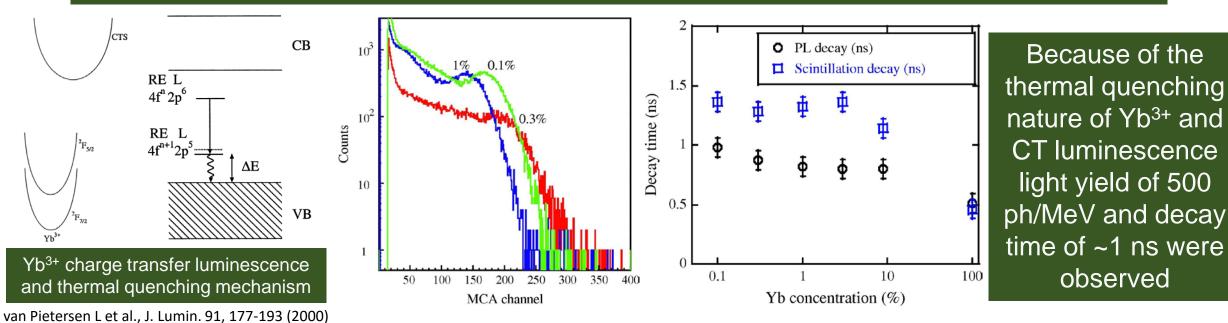
Background: Lu₂O₃:Yb Ceramics

A Dynasil Company

$2005-1^{st}$ report on Lu_2O_3 : Yb ceramics


• Takaichi K et al., phys. stat. sol. (a) 202, R1-R3 (2005)

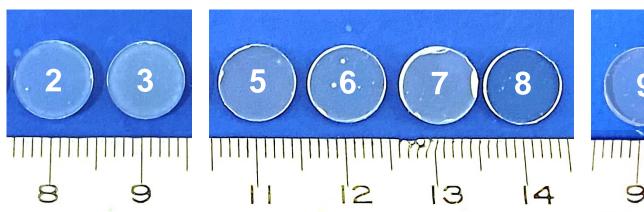
2011—Lu₂O₃:Yb ceramics fabricated by hot-pressing method


• Sanghera J et al., Opt. Mater. 33, 670-674 (2011)

2014—Lu₂O₃:Yb ceramics as a heavy and ultrafast scintillator

• Yanagida T et al., Opt. Mater. 36, 1044-1048 (2014)

Excellent optical quality approaches theoretical transmittance observed in Lu₂O₃:Yb ceramic samples



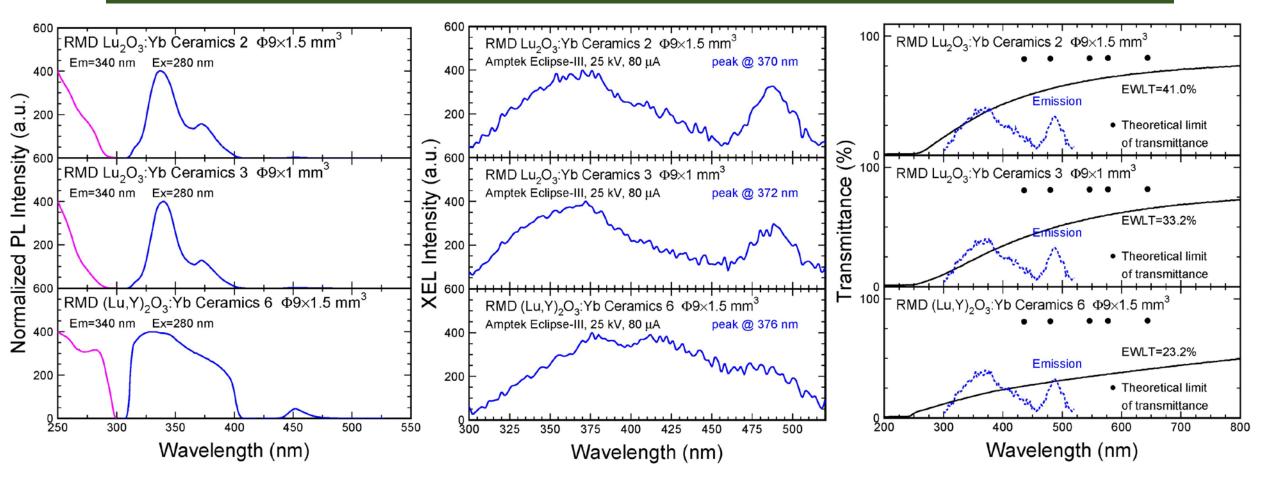
5/17/2021

RMD Lu₂O₃:Yb Ceramic Samples

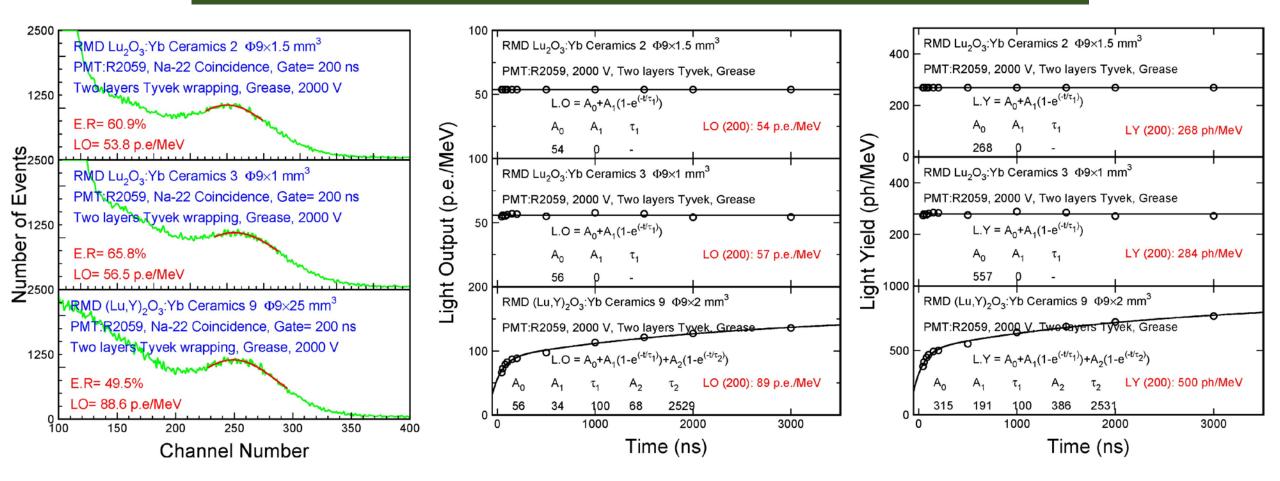
ID	Dimension (mm ³)	Composition
RMD-2	Ф9×1.5	Lu ₂ O ₃
RMD-3	Ф9×1	Lu ₂ O ₃
RMD-5	Ф9×1.5	(Lu,Y) ₂ O ₃
RMD-6	Ф9×1.5	(Lu,Y) ₂ O ₃
RMD-7	Ф9×2	Lu ₂ O ₃
RMD-8	Ф9×1	(Lu,Y) ₂ O ₃
RMD-9	Ф9×2	(Lu,Y) ₂ O ₃

	Lu ₂ O ₃	LYSO	BaF ₂	LuAG
Density (g/cm ³)	9.42	7.4	4.89	6.76
Melting points (°C)	2490	2050	1280	2060
X ₀ (cm)	0.81	1.14	2.03	1.45
R _M (cm)	1.72	2.07	3.1	2.15
λ _ι (cm)	18.1	20.9	30.7	20.6
Z _{eff}	68.0	64.8	51.6	60.3
dE/dX (MeV/cm)	11.6	9.55	6.52	9.22

Lu₂O₃:Yb is attractive to the HEP community: high density, ultrafast decay and large dE/dX. Single crystal growth is an expensive process due to its very high melting point. Ceramics are a promising approach.

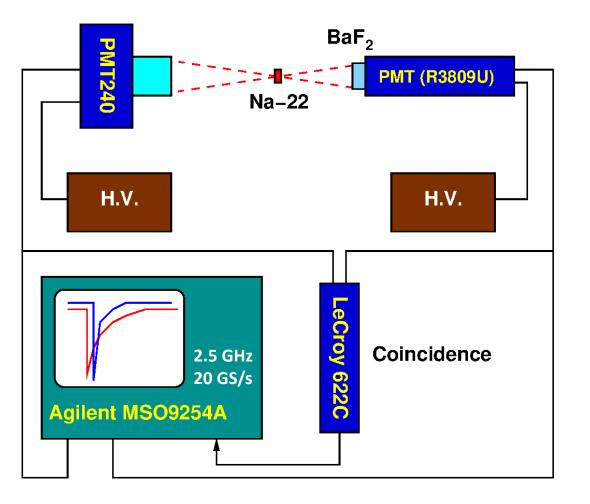

5/17/2021

Emission and Transmittance


Photo-luminescence and X-ray excited luminescence peaked at ~340 nm and ~370 nm (Lu,Y)₂O₃:Yb sample 6 show poor transmittance, probably due to increased scattering

MSTITUTE OF RCHNOLOS

Light Output/Yield: Lu₂O₃:Yb Ceramics RMD

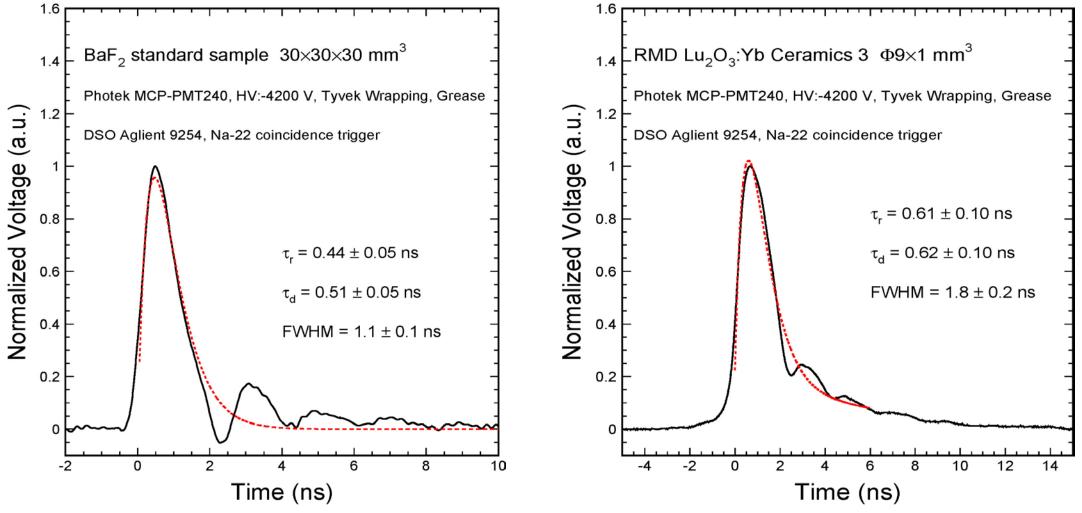

Light yield calculated by taking QE/PDE out of the measured light output Lu₂O₃:Yb shows light yield up to 280 ph/MeV with negligible slow component Y admixture increases light output, but introduces slow light of ~100 and ~2,500 ns

5/17/2021

Temporal Response: An MCP-Based Test Bench

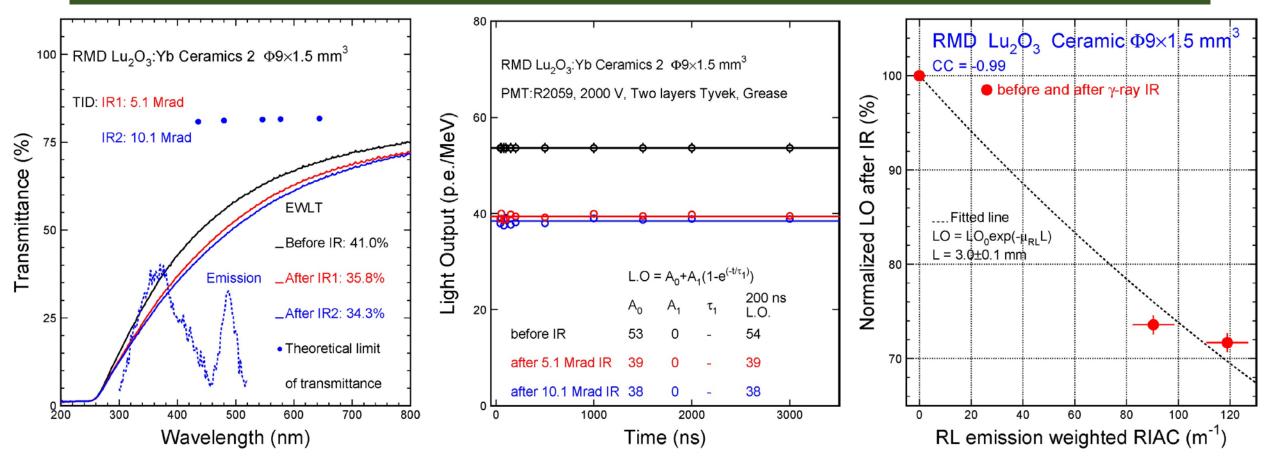
Fitting:
$$V = A(e^{-\frac{t}{\tau_d}} - e^{-\frac{t}{\tau_r}}) + B$$

A: amplitude,
B: background noise or slow component,
τ_r: rise time,
τ_d: decay time.


Rise, decay and FWHM obtained by fitting pulse shape responding to ²²Na

Decay Time: BaF₂ and Lu₂O₃:Yb

Decay time of 0.5 and 0.6 ns observed for a BaF_2 crystal and RMD Lu_2O_3 : Yb-3



5/17/2021

Presented by Chen Hu of Caltech in the 2022 Carlo Conference, University of Sussex, Brighton, UK

Damage appears saturated after 5.1 Mrad. Dose rate dependence under study Light output loss is due to induced absorption with a mean light path of 3 mm

Lu₂O₃:Yb shows higher ultrafast and lower slow light with the ratio between the light yield in the 1st and 2 ns to the light yield in 3,000 ns (U/T) exceeds 80% and 95% respectively

One (Lu,Y)₂O₃:Yb sample shows the highest LY in the 1st ns, but also the lowest U/T ratio

Fast and Ultrafast Inorganic Scintillators

	BaF ₂	BaF ₂ :Y	ZnO:Ga	Lu ₂ O ₃ :Yb	YAP:Yb	YAG:Yb	β-Ga ₂ O ₃	PWO	LYSO:Ce	LuAG:Ce	YAP:Ce	GAGG:Ce	LuYAP:Ce	YSO:Ce
Density (g/cm ³)	4.89	4.89	5.67	9.42	5.35	4.56	5.94 ^[1]	8.28	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	1975	2490	1870	1940	1725	1123	2050	2060	1870	1850	1930	2070
X ₀ (cm)	2.03	2.03	2.51	0.81	2.77	3.53	2.51	0.89	1.14	1.45	2.77	1.63	1.37	3.10
R _M (cm)	3.1	3.1	2.28	1.72	2.4	2.76	2.20	2.00	2.07	2.15	2.4	2.20	2.01	2.93
λ _ι (cm)	30.7	30.7	22.2	18.1	22.4	25.2	20.9	20.7	20.9	20.6	22.4	21.5	19.5	27.8
Z _{eff}	51.6	51.6	27.7	68.0	31.9	30.0	28.1	74.5	64.8	60.3	31.9	51.8	58.6	33.3
dE/dX (MeV/cm)	6.52	6.52	8.42	11.6	8.05	7.01	8.82	10.1	9.55	9.22	8.05	8.96	9.82	6.57
λ _{peak} ^a (nm)	300 220	300 220	380	370	350	350	380	425 420	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.1	2.0	1.96	1.87	1.97	2.20	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	6.6 ^d	0.95	0.19 ^d	0.36 ^d	6.5 0.5	1.6 0.4	100	35° 48°	9 32	115	16 15	80
Total Light yield (ph/MeV)	13,000	2,000	2,000 ^d	280	57 ^d	110 ^d	2,100	130	30,000	25,000 ^e	12,000	34,400	10,000	24,000
Decay time ^a (ns)	600 <mark>0.5</mark>	600 0.5	<1	0.6	1.5	4	148 <mark>6</mark>	30 10	40	820 50	191 25	53	1485 36	75
LY in 1 st ns (photons/MeV)	1200	1200	610 ^d	230	28 ^d	24 ^d	43	5.3	740	240	391	640	125	318
LY in 1 st ns /Total LY (%)	9.2	60	31	82	49	22	2.0	4.3	2.5	1.0	3.3	1.9	1.3	1.3
40 keV Att. Leng. (1/e, mm)	0.106	0.106	0.407	0.127	0.314	0.439	0.394	0.111	0.185	0.251	0.314	0.319	0.214	0.334

5/17/2021

- Development of ultrafast heavy crystals with sub-nanosecond decay time is important to break the ps timing barrier for future HEP TOF system and ultrafast calorimetry, and for GHz hard X-ray imaging.
- All Lu_2O_3 : Yb samples show PL and XEL emission peaked at ~340 and ~370 nm.
- Lu_2O_3 : Yb ceramics show light yield up to 280 ph/MeV with negligible slow component. Mixing Lu_2O_3 with Y_2O_3 appears increase light yield in 200 ns to 500 ph/MeV with significant slow component of 100 and 2,500 ns decay time.
- Sub-nanosecond decay time of 0.6 ns was observed by using MCP-PMT.
- With high density, ultrafast decay time and high U/T ratio Lu₂O₃:Yb ceramics is promising for future HEP TOF and calorimetry applications. RMD is continuing to optimize its composition to increase the ultrafast light with slow component under control.

Acknowledgements: DOE HEP Award DE-SC0011925 and SBIR Award DE-SC0021686