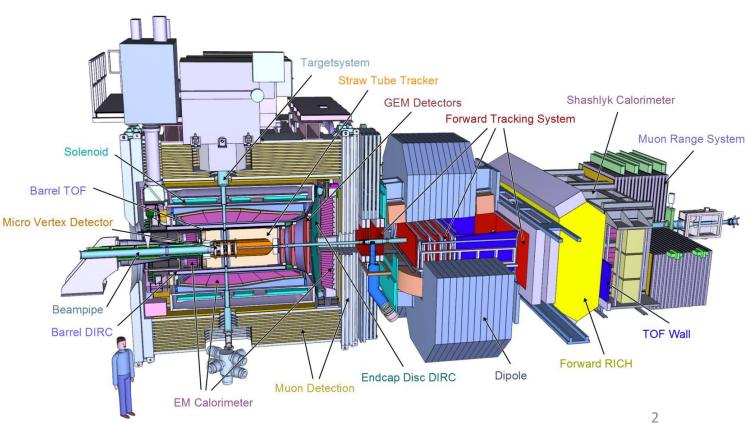


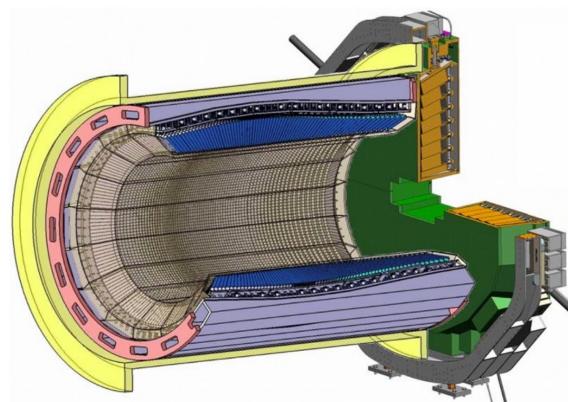
Performance Study of a New Cluster Splitting Algorithm for the Reconstruction of PANDA EMC Data

Ziyu Zhang On behalf of the PANDA Collaboration


19th International Conference on Calorimetry for High Energy Physics

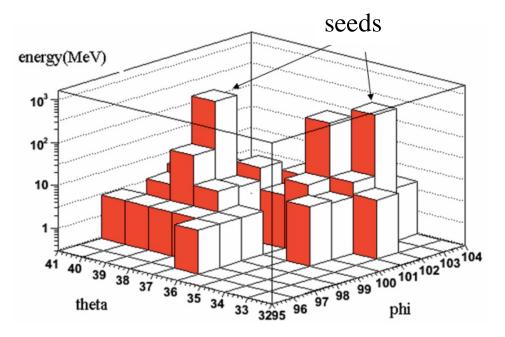
University of Sussex, Brighton, 16-20 May 2022

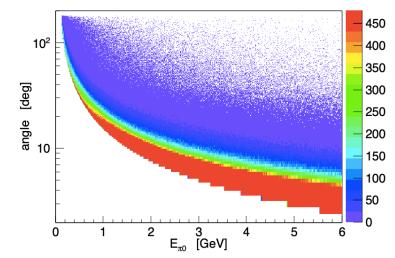
May 17, 2022


PANDA Experiment

- Anti<u>Proton</u> <u>AN</u>nihilations at <u>DA</u>rmstadt
- Cooled antiproton beams between 1.5 GeV/c to 15 GeV/c
- Fixed target experiment : Hydrogen and other
- √s : 2.3 GeV ~ 5.5 GeV
- High luminosity: 10³² cm⁻² s⁻²
- Hadron spectroscopy
 - Exotic states
 - Baryons
- Nucleon structure
- Mesons in nuclear
- Hypernuclei

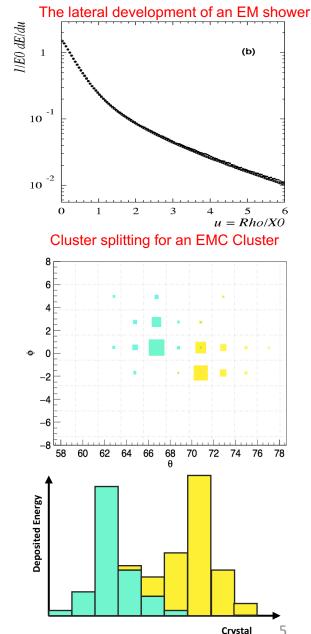
PANDA Electromagnetic Calorimeter


- PANDA physics: Full reconstruction of multiphoton and lepton-pair channels of utmost importance
- Target Spectrometer:
 - Barrel part and two endcaps
 - 16,000 crystals, improved PbWO4
 - $X_0 = 0.89$ cm, $R_M = 2.00$ cm
 - For barrel EMC, 11360 crystals, the average lateral size of crystal is 21.3mm
- Forward Spectrometer:
 - Shashlik type sampling calorimeter
- Good energy and spatial resolution for photons
 - $\leq 1\% \oplus \frac{\leq 2\%}{\sqrt{E/GeV}}$
 - $\leq 0.5^{\circ}$ (backward), $\leq 0.3^{\circ}$ (barrel), $\leq 0.1^{\circ}$ (forward)


• For barrel EMC : 22 $^{\circ} < \theta < 140^{\circ}$

EMC Reconstruction

- Cluster Finding
 - A contiguous area of crystals with energy deposition
 - Local maximum as the seed of shower
- Cluster Splitting
 - Several local maxima due in general to overlapping showers
 - Especially important for high momentum π^0 , significance of π^0 depends on mass resolution, and performance of cluster splitting algorithm



Angles between the 2y from pi0

Cluster Splitting in Reconstruction

- The purpose of the cluster splitting is to precisely assign energy deposits to the correct particles
- Update energy/position iteratively
 - EM lateral development of a shower: $E_{target} = E_{seed} \cdot exp(-2.5 r/R_M)$
 - The fraction of energy for each shower deposited in same crystal is calculated
 - Estimated energies and positions of the single showers involved as input parameters
- In this presentation, the cluster splitting algorithm is improved:
 - Update the lateral development description function based on crystal granularity
 - Correct the seed energy

Cluster Splitting Algorithm*

Initialization:

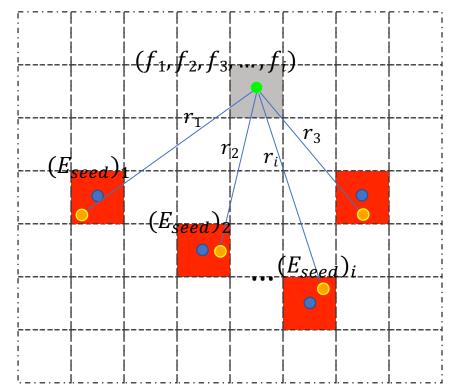
Place the shower center at the center of seed crystal, the total energy of seed crystal as E_{seed} .

• Iteration:

1.Traverse all crystals to calculate fraction f_i of shower *i*.

$$f_i = \frac{(E_{\text{seed}})_i \cdot \exp(-2.5 \cdot r_i/R_m)}{\sum_j (E_{\text{seed}})_j \cdot \exp(-2.5 \cdot r_j/R_m)}$$

i or j : different showers

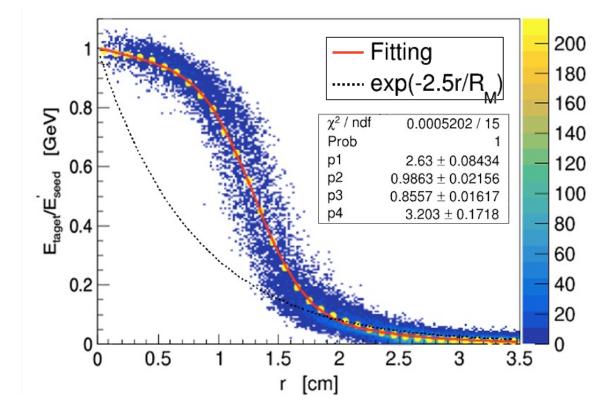

 R_m : Moliere radius

 r_i : distance from the shower center to the center of target crystal

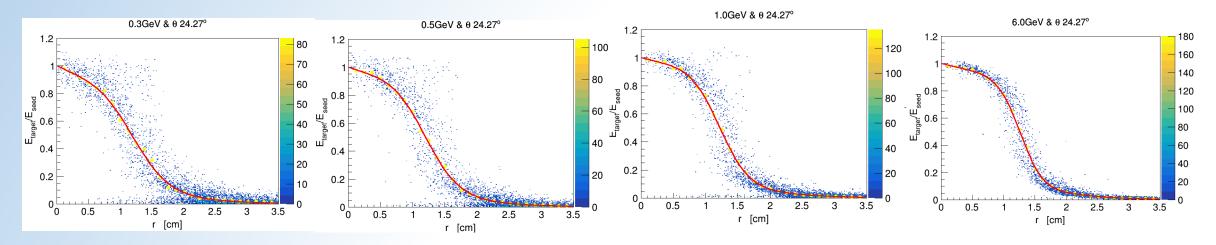
2. Update the position of the shower center and $E_{\text{seed.}}$

3. Loop over 1 & 2 until the shower center convergent.

- the target crystal
- the seed crystal
- the shower center



*Similiar as BESIII and BaBar: [1] BESIII Collaboration, Nucl. Inst. Meth. A Volumn 614, Issue 3, 11 March 2010. [2] BABAR Collaboration, B. Aubert *et al.*, Nucl. Instr. and Methods A **479**, 1 (2002).


The Lateral Development of Electromagnetic Shower

- The conventional lateral development formula $\frac{E_{\text{target}}}{E_{\text{seed}}} = \exp(-2.5 r/R_M)$ has no consideration of crystal granularity.
- The function form used for fitting: $f(r) = \frac{E_{\text{target}}}{E_{\text{seed}}} = \exp\left[-\frac{p_1}{R_M} \cdot \xi(r)\right],$ $\xi(r) = r - p_2 \cdot r \cdot \exp\left[-\left(\frac{r}{p_3 \cdot R_M}\right)^{p_4}\right]$

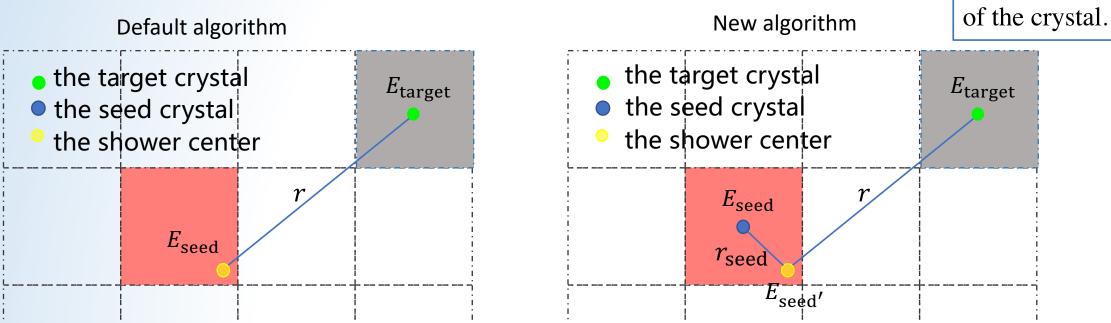
here p_1 , p_2 , p_3 and p_4 are parameters.

Parametrization

Fit the distribution of different detector polar angle and energy regions for barrel EMC to get the parameters.

$$\frac{E_{\text{target}}}{E_{\text{seed}}} = \exp\{-\frac{p_1}{R_M} \cdot \xi(r, p_2, p_3, p_4)\} \qquad \qquad \xi(r) = r - p_2 \cdot r \cdot \exp[-\left(\frac{r}{p_3 R_M}\right)^{p_4}] \quad (R_M = 2.00 \text{ cm})$$

$$p_1(E_{\gamma}, \theta) = -0.384 * \exp(3.88 * E_{\gamma}) + 5.44 * 10^{-5} * (\theta - 97.7)^2 + 2.6$$


$$p_2(E_{\gamma}, \theta) = -0.352 * \exp(4.21 * E_{\gamma}) + (-3.94) * 10^{-6} * (\theta - 69)^2 + 0.932$$

$$p_3(E_{\gamma}, \theta) = 0.151 * \exp(4.52 * E_{\gamma}) + (-2.14) * 10^{-5} * (\theta - 91)^2 + 0.841$$

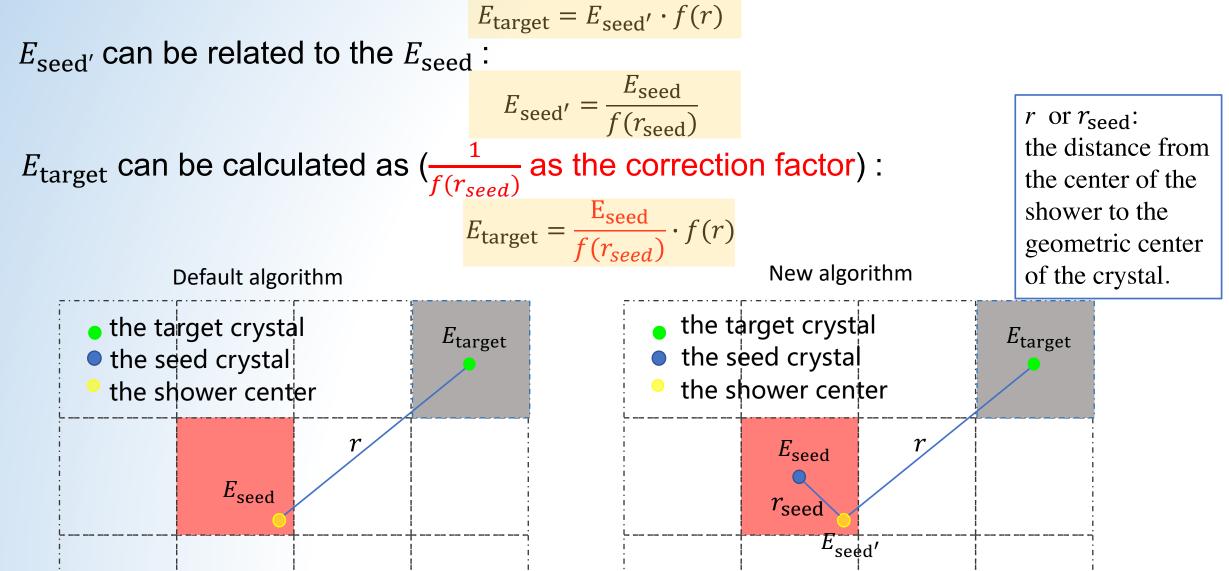
$$p_4(E_{\gamma}, \theta) = -3.51 * \exp(1.15 * E_{\gamma}) + 2.26 * 10^{-4} * (\theta - 80.3)^2 + 4.96$$
Energy dependency Angle dependency

Seed Energy Correction

- In the default algorithm, the seed energy is used to calculate the $E_{\text{target}} = E_{\text{seed}} \cdot f(r)$
- If the shower center not coincide with the crystal center, E_{seed} needs to be corrected

r or r_{seed} :

the distance from


the center of the

geometric center

shower to the

Seed Energy Correction

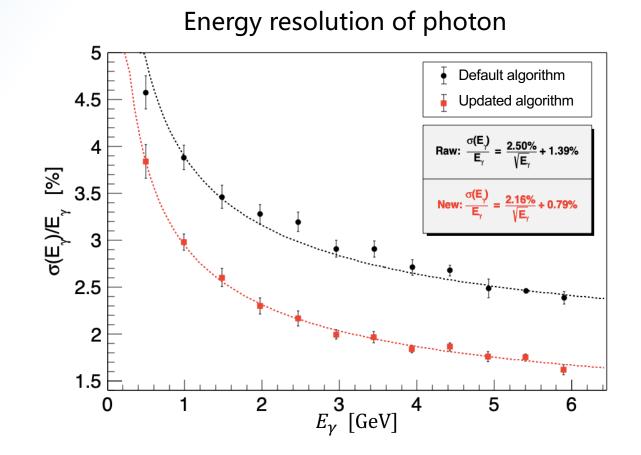
• In the new method, E_{target} can be calculated by the lateral development f(r):

Parametrization after Seed Correction

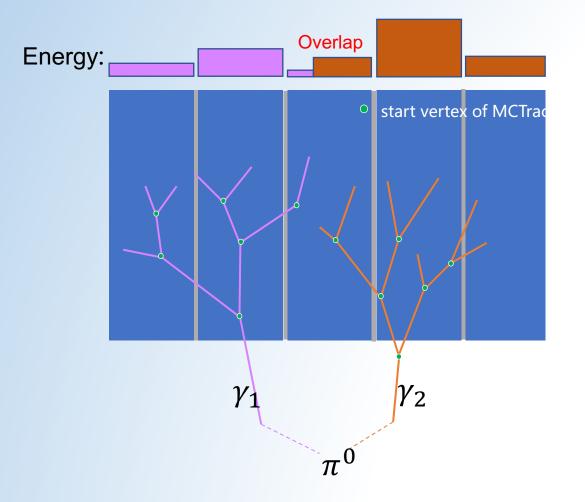
Seed energy correction

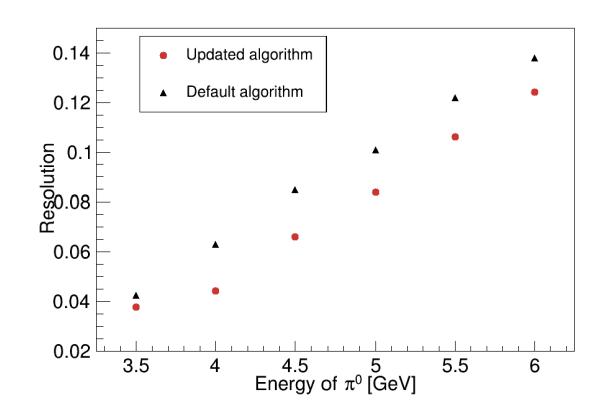
$$\frac{E_{\text{target}}}{E_{\text{seed}}} = \exp\{-\frac{p_1}{R_M}[\xi(r, p_2, p_3, p_4) + \xi(r_{\text{seed}}, p_2, p_3, p_4)]\xi(r) = r - p_2 \cdot r \cdot \exp[-\left(\frac{r}{p_3 \cdot R_M}\right)^{p_4}](R_M = 2.00 \text{ cm})$$

$$p_1(E_{\gamma}, \theta) = -0.384 * \exp(3.88 * E_{\gamma}) + 5.44 * 10^{-5} * (\theta - 97.7)^2 + 2.6$$


$$p_2(E_{\gamma}, \theta) = -0.352 * \exp(4.21 * E_{\gamma}) + (-3.94) * 10^{-6} * (\theta - 69)^2 + 0.932$$

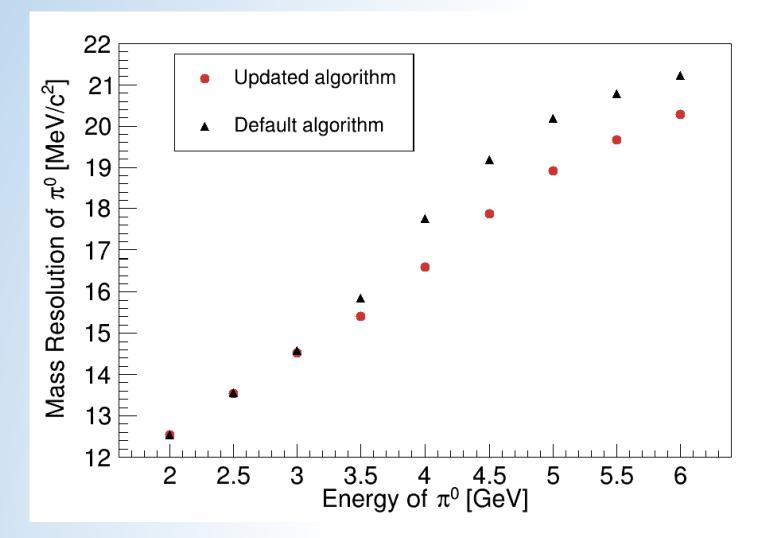
$$p_3(E_{\gamma}, \theta) = 0.151 * \exp(4.52 * E_{\gamma}) + (-2.14) * 10^{-5} * (\theta - 91)^2 + 0.841$$


$$p_4(E_{\gamma}, \theta) = -3.51 * \exp(1.15 * E_{\gamma}) + 2.26 * 10^{-4} * (\theta - 80.3)^2 + 4.96$$
Energy dependency
Angle dependency

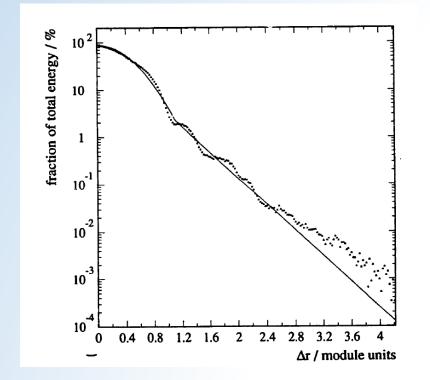

Photon Resolution from Small-cross-angle Photon Samples

- The angle between two photons < 6.75(deg)
- Energy: 0.5 ~ 6 GeV

Photon Resolution from π^0 Samples



• MC Truth information stores energy deposited in calorimeter of two photons from π^0


• The deviation to MC Truth is smaller for new algorithm

π^0 Mass Resolution

• The mass resolution of the π^0 has been improved in the high energy range compared with the conventional method.

Validation by experimental data

35 30 25 E_{target}/E _01seed 20 15 10 10^{-2} 5 0.5 2.5 3.5 1.5 2 3 0 r [cm] ${}^{*}f(r,E) = A \cdot \operatorname{Max}(\exp\left(-\frac{r^{2}}{p_{1}}\right), d \cdot \exp(-\frac{r}{s}))$ $d = p_2 + p_3 \cdot E^{p_4}$ $s = p_5 - p_6 \cdot \ln(E)$

*The lateral development of electromagnetic showers extracted from experimental data.

[1] F. Berger et al., Nucl. Instrum. Methods A321 (1992) 152.[2] ALICE Technology design report of the photon spectrometer.

Summary

- The cluster splitting algorithm is improved with a new lateral development description function
 - Lateral development based on the crystal granularity
 - Dependency of energy and angle of incident particle
 - Seed energy is corrected
- Good performance of new splitting algorithm
 - Energy resolution of small-cross-angle photons and daughter photons of π^0
 - Mass resolution of π^0
- Obvious improvements of mass resolution and significance of high momentum π^0

Backup Slides