

Commissioning of SiW ECAL Prototype

Roman Pöschl

On behalf of the SiW ECAL Groups in CALICE:

CALOR 2022 – May 2022

Particle Flow Calorimetry

Jet energy measurement by measurement of individual particles Maximal exploitation of precise tracking measurement

- large radius and length
 - → to separate the particles
- large magnetic field
 - → to sweep out charged tracks
- "no" material in front of calorimeters
 - → stay inside coil
- small Molière radius of calorimeters
 - → to minimize shower overlap
- high granularity of calorimeters
 - → to separate overlapping showers

Particle flow as privileged solution for experimental challenges

=> Highly granular calorimeters!!!

Emphasis on tracking capabilities of calorimeters

Jet Energy Resolution

Final state contains high energetic jets from e.g. Z,W decays Need to reconstruct the jet energy to the <u>utmost</u> precision! Goal is around dE_{jet}/E_{jet} - 3-4% (e.g. 2x better than ALEPH)

TPC Momentum Resolution (GeV/c)

Jet energy carried by ...

- Charged particles (e[±], h[±],µ[±]65% :((
 Most precise measurement by Tracker
 Up to 100 GeV
- Photons: 25%
 Measurement by Electromagnetic
 Calorimeter (ECAL)
- Neutral Hadrons: 10%
 Measurement by Hadronic
 Calorimeter (HCAL) and ECAL

$$\sigma_{Jet} = \sqrt{\sigma_{Track}^2 + \sigma_{Had.}^2 + \sigma_{elm.}^2 + \sigma_{Confusion}^2}$$

Silicon Tungsten electromagnetic calorimeter

- Base measurement as much as possible on measurement of charged particles in tracking devices
- Separate of signals by charged and neutral particles in calorimeter

- Complicated topology by (hadronic) showers
- Overlap between showers compromises correct assignment of calo hits

□ Confusion Term

Need to minimize the confusion term as much as possible !!!

Jet energy resolution

Pandora PFA jet energy resolution

Study within ILD Concept

- Design goal: 30%/√E at 100 GeV
 - ~3-4% over entire jet energy range
- At lower energies < 100 GeV resolution is dominated by intrinsic calorimeter resolution
- At higher energies have more particles and higher boost
 - Smaller distance between particles
 - More overlap between calorimeter showers
 - Pattern recognition becomes more challenging
 - =>Confusion
- Note particularly the gain by software compensation
 - i.e. exploiting the wealth of information available through high granularity

PFA ARBOR is algorithm of choice for CEPC Detector with similar performance

CALICE Collaboration

CALICE Collaboration

Si Based Calorimeters in Current and Future Experiments

FoCal-E

Grouped into two categories:

Main calorimeters of collider experiments

(barrel and / or endcap)

CMS HGCAL (ECAL, part of HCAL)

in collider and non-collider experiments

Very forward calorimeters: ALICE

Luminosity measurement at e⁺e⁻

Non-collider experiments: LUXE, Satellites,

• •

Main arguments for adopting silicon:

- Finely segmentable: High granularity
- Robust and stable performance
- Compact design, high density
 - typically combined with W absorbers for maximum compactness, small ρ_M

Main challenge: Cost

ECALs of Higgs Factory detectors (linear and circular colliders);
Muon colliders

Symposium talk: V. Boudry

Granular calorimeters – Use case I

Examples:

- W Fusion with final state neutrinos requires reconstruction of H decays into jets
- Jet energy resolution of ~3% for aclean W/Z separation

Slide: F. Richard at International Linear Collider – A worldwide event

Granular calorimeters – Use case II - T-lepton reconstruction

Available Tau Finders:

- TAURUS (for CEPC)
- Tau-Finder in ILD Marlin

- Features on TT fnal states
 - Small multiplicity
 - => Can cut on small number of Particle Flow objects
- Assets of granular calorimeters
 - High granularity allows for counting of PFO
 - Clean separation of charged pion from photon clusters
 - Spatial resolution of close-by photons (at reasonable energy resolution)
 - Prominently used T decays

$$\tau^{\pm} \to \pi^{\pm} + \nu \, ("\pi")$$

$$\tau^{\pm} \to \pi^{\pm} + \pi^{0} + \nu \, ("\rho")$$

$$\tau^{\pm} \to \pi^{\pm} + \pi^{0} + \pi^{0} + \nu \, ("a_{1}")$$

Granular calorimeters – Use case II - T-lepton reconstruction cont'd

$$e^+e^- \rightarrow \tau^+\tau^-$$
 Recer

 $e^+e^- \rightarrow \tau^+\tau^-$ Recent study at 500 GeV for ILD IDR

- Photon separation gets involved at high energies
- Still often only one photon reconstructed

 EfficiencyxPurity drops with increasing photon multiplicity

Precision of tau polarisation of order 0.3%-1%

- Close-by photons are challenge for highly granular calorimeters (in particular Ecal) at high-energies
- Ideal benchmark for detector optimisation
- Maybe still room for improvement, better algorithms?

Granular calorimeters – Use case III

- Most ISR Photon are radiated collinearly but lead to a boost -> Check for acolinearity of dijet event
- Method doesn't work when photon is radiated into detector acceptance
 - ... and merged with a jet --> Busy environment

"Strong? ISR

- Excellent photon ID in granular calorimeter is key
- Identification of ISR photon within detector (jet) reduces ISR background by nearly a factor of six
- Would be interesting to carry out this analysis with less granular calorimeters

ILD: Irles, Richard, R.P.

Steps of R&D

13

Physics Prototype

2003 - 2012

Technological Prototype

2010 - ...

LC detector

- Proof of principle of granular calorimeters
- Large scale combined beam tests

- Engineering challenges
- Higher granularity
- Lower noise
 - Today

- The goal
 - Typically 10⁸ calorimeter cells
- Compare:
 - ATLAS LAr ~10⁵ cells
 - CMS HGCAL ~10⁷ cells

Steps of R&D

Physics Prototype

2003 - 2012

- Proof of principle of granular calorimeters
- Large scale combined beam tests

Technological Prototype

2010 - ...

- Engineering challenges
- Higher granularity
- Lower noise
 - Today

LC detector

- The goal
 - Typically 10⁸ calorimeter cells
- Compare:
 - ATLAS LAr ~10⁵ cells
 - CMS HGCAL ~10⁷ cells

Silicon Tungsten electromagnetic calorimeter – Example ILD

Ecal alveolar structure

- Thickness: ~20cm 26 layers (+/- 4)
- $24 X_0/1\lambda_1$

Expected elm. energy resolution 15-20%/√E

- Sandwich calorimeter
 - Si sensors as active material
 - W as absorber material
- Highly integrated design
 - ASICs in detector volume
 - Compact readout system

SiW Ecal – Elements of (long) layer

ASIC+PCB+SiWafer
=ASU
Size 18x18 cm²
(IJCLab, Kyushu, OMEGA, LLR, SKKU)

ASIC SKIROC2(a) (OMEGA)
Wire Bonded or In BGA package (IJCLab, Kyushu, LLR)

Interconnection
(IJCLab)

Digital readout
SL-Board (IJCLab)

SiWafers glued onto PCB Pixel size 5.5x5.5 mm² (LPNHE)

Note that an additional hub for hardware Development is being set up at IFIC/Valencia

• The beam test set up will consist of a stack of short layers consisting of one ASU and a readout card each

1500mm

SiW Ecal – Wafer R&D I

Si Sensor (9x9cm² from 6" wafer)

Wafer specs

Tab 1 : Summary of the substrate characteristics					
	Min.	Typ.	Max.		
N type silicon	-	-	-		
Resistivity (kOhms.cm)	4	5	-		
Thickness (μm), option T1	310	320	330		
Thickness (µm), option T2	490	500	510		
Width (mm), option S1	89.7	89.8	89.9		
Width (mm), option S2	44.7	44.8	44.9		

Definition of specifications for different wafer types:

Resisitvity: $> 5 \text{ k}\Omega\text{xcm}$

N-type silicon

Crystal Orientation: <100> or <111>

 In addition we require small leakage current:s under full depletion a few nA/pixel but for cost reasons we tolerate a certain fraction of pixels with higher leakage currents

Vendors: OnSemi (CZ) and Russian company for physics prototype (~2003)
 Hamamatsu for technological prototype (since ~2010)
 Contacts with other vendors (e.g. LFoundry) hibernating mainly for funding reasons

SiW Ecal – Wafer R&D II

We (i.e. Mainly Kyushu) have tested several wafer types in previous years

- Cut size determine the actual sensitive area of a wafer
- Different designs mainly on test samples of "baby wafers"
- The "Hamamatsu" standard is still 0 or 1 full guard ring
 - 0 is "fake 0" guard ring, in fact there is still a small guard ring

Observations in recent years (see also backup for more details)

- Split or no guard ring lead to suppression of square events
- In prototype we still use full wafers with 0 or 1 guard ring
- General trend of reduction of bias voltage
- Can operate 500mum wafers at 60-80 V in full depletion

Towards 8" wafers?

- General trend (e.g. CMS) is to use 8" wafers
- Larger surface/wafer =>smaller cost
- Standard thickness 725mum

SiW Ecal – Front end electronics

SKIROC (Silicon Kalorimeter Integrated Read Out Chip)

SiGe 0.35µm AMS, Size 7.5 mm x 8.7 mm, 64 channels

High integration level (variable gain charge amp, 12-bit Wilkinson ADC, digital logic)

Large dynamic range (~2500 MIPS), low noise (~1/10 of a MIP)

Auto-trigger at ½ MIP, on chip zero suppression

Low Power: (25µW/ch) power pulsing

Prologue – "The FEV Zoo"

- In recent years the SiW ECAL has developed and used several PCB variants
 - To make sure that you don't get lost, here comes an introduction

FEV10-12

FEV_COB

FEV13

- ASICs in BGA Package
- Incremental modifications
 From v10 -> v12
- Main "Working horses" since 2014

- ASICs wirebonded in cavities
 - COB = Chip-On-Board
- Current version FEV11 COB
- Thinner than FEV with BGA
- External connectivity compatible with BGA based FEV10-12

- Also based on BGA packaging
- Different routing than FEV10-12
- Different external connectivity

Current prototype (see later) is equipped with all of these PCBs

SiW Ecal – Assembly and QA Chain

(In house) cabling and electronics tests with highly mobile DAQ system

Wafer Gluing with robot

Metrology of PCBs

Detector assembly

Operational assembly chains in France and Japan

SiW Ecal – Assembly of COB ASU

- Height 1.2mm
 - Thin multilayer board => Thermal stress during board production => Planarity was an issue
 - Less than 0.5mm bending after production for 8-% of the board
- ASICs on COB have to be protected
 - Successful "in house" application of Epoxy (Loctite Hysol) on several boards
- Gluing of four sensors onto two boards during winter 2021/22
 - After first test with one sensor in 2019
- First beam test in Summer 2019 with two boards (after many years of development)
- Only one wafer per board
- Full equipement for beam tests 2022

Prototypes until ~2018

PCB FEV10-12
with long adapter card
Wafer thickness
325 µm

PCB FEV13
with small(er) adapter
card
Wafer thickness
650 µm

Total ~15 layers constructed

- Max of ten tested within one stack
- 1024 channels per layer
- Beam tests at DESY and CERN since 2016

R&D for thin PCB see backup

Compact readout

Current detector interface card (SL Board) and zoom into interface region

SL Board

- "Dead space free" granular calorimeters put tight demands on compactness
 - Current developments in for SiW ECAL meet these requirements
- System allows to read column of 15 layers <-> to be expected in ILD
 - Important that full readout system goes through scrutiny in beam tests

Complete readout system

For reference Comparison old/new r/o system

SiW ECAL 2018 -> 2022

- 7 short layers (18x18x0.5cm³)
- 1024 channels per layer => 7186 cells
 - Assembly chains in France and Japan
 - Beam tests at DESY and CERN since 2016

- 15 layers equivalent to 15360 readout cells
- Overall size 640x304x246mm³
 - Commissioned in 2020 and 2021
 - Testbeams (finally) in November 2021 and March 2022
 - 1.5 years in waiting loop due to pandemic

SiW-ECAL in beam test @ DESY

Detector Setup

Detector in beam position

- Stack operational
- Beam spot in 15 layers

More on performance see next talk by Adrian

SiW-ECAL Beam test – Online Monitoring

Jihane Maalmi, CALICE Meeting Valencia

- Online Hit Maps and shower profiles
- Allow for real time beam and detector tuning e.g. Adaptation of beam rates or thresholds

- Further online tools
- Pedestal measurement and subtraction
- Charge measurement and histogramming
- MIP gain correction

These are just a few examples from the powerful online suite

Common testbeams

Preparation for common SiW-ECAL AHCAL beam test

SiW-ECAL + AHCAL DAQ test @ DESY in March 2022

- Successful synchronisation of data recorded with SIW-ECAL and AHCAL
- Common running makes full use of EUDAQ tools (developed within European projects)

Gearing up for common beam test at CERN in June

Reminder power pulsing

Linear Colliders operate in bunch trains

CLIC: $\Delta t_b \sim 0.5$ ns, frep = 50Hz

ILC: $\Delta t_b \sim 550$ ns, frep = 5 Hz (base line)

- Power Pulsing reduces dramatically the power consumption of detectors
 - e.g. ILD SiECAL: Total average power consumption 20 kW for a calorimeter system with 10⁸ cells
- Power Pulsing has considerable consequences for detector design
 - Little to no active cooling
 - => Support compact detector design
- Have to avoid large peak currents
- Have to ensure stable operation in pulsed mode
- Upshot: Pulsed detectors face other R&D challenges than those that will be operated in "continuous" mode

New PCB – FEV2.x

LLR, IJCLab, LPNHE, OMEGA

- Power Pulsing Mode: new philosophy
- limiting the current through the Slab (current limiter present on the SL Board) to:
 - avoid driving high currents through the connectors and makes the current peaks local around the SKIROCs chips
 - avoid voltage drop along the slab
 - ensure temperature uniformity
- We add large capacitors with low ESR for local energy storage (around each SKIROC chip)
- Generate local power supply with LDO (Low Drop Out) to avod voltage variations
- Clean clock distribution all over the slab
 - for Slow Control and Readout Clocks
- Parallel configuration and readout over 2 partitions.
- Driving high voltage up to 350V for 750µm wafer (via the ASU connectors)
 - Adding a filter for each wafer HV and limit the current in case of wafer failure

Reminder – Electrical long slab

Chain of 8 detection elements ~3m

- Very encouraging results in first beam test in 2018
 - Credibility for concept as foreseen for e.g. ILD
 - Issues with signal drop towards extremities
- Long slab studies will be resumed with new FEV
 - Adapted for power pulsing, will avoid voltage drop, etc ...

(Non exhaustive) "To do list" (for LC Detector)

	Today	LC Detector
#cells*	15360	10 ⁸
Sensor surface/m ²	0.5	2000-2500
Sensor type	9x9cm² based on 6" wafers	Size ? Based on 8" wafers?
Real size slabs	1 "electrical" long layer	~10000 detector slabs (5000 double layers)
Front end ASICs	SKIROC2, ns timing	SKIROC3, ps timing? Need 1.2-1.5M
Digital electronics	SL-Boardv2 (already quite close)	New versions,need 9k
DAQ	Highly performant system for prototype	Scaling to full detector
PCB	FEV2.x (already quite close)	Integration of new FE electronics, need ~75k
Slow control	Integrated in SL Board	Solution for full detector?
Mechanical Structures	1 barrel alveaola structure (EUDET 2010)	40 barrel modules + endcaps
Carrier Boards	Simple carbon plates	"H Boards" with wrapped W (Studies date back to 2010-2016)
Cooling	Advanced studies (AIDA-2020)	Full detector integration Continous powering woulf be anew world
Engineering (electrical and mechanics)	Advanced studies (for ILD IDR)	Require full revision and consolidation
Software	Few skillful people	Needs consolidation and person power

- A lot has been achieved
 - ... but the way is still long, as of today the team is too small and the funding is very (too) volatile
 - We are good in engineering but too few (young) physicists

Timing?

- Timing is a wide field
- A look to 2030 make resolutions between 20ps and 100ps at system level realistic assumptions
- At which level: 1 MIP or Multi-MIP?
- For which purpose ?
 - Mitigation of pile-up (basically all high rate experiments)
 - Support of PFA unchartered territory
 - Calorimeters with ToF functionality in first layers?
 - Might be needed if no other PiD detectors are available (rate, technology or space requirements)
 - In this case 20ps (at MIP level) would be maybe not enough
 - · Longitudinally unsegmented fibre calorimeters

■ Required Time Resolution [ps]

- A topic on which calorimetry has to make up it's mind
 - Remember also that time resolution comes at a price -> High(er) power consumption and (maybe) higher noise levels

Timing in calorimeters

Features that emerge in the time domain can help distinguish particle types and, with GNNs, enhance $\sigma(E)/E$

Calorimeters with ToF Functionality?

- Particle momenta (at 250 GeV) have peak below 10 GeV but long tail to higher energies
- Realistically ToF measurements will be (in foreseeable future) limited to particles below 10 GeV
 - Note that, apart from power consumption, in a final experiment one needs to control full system
- Momenta above 10 GeV require a real breakthrough and maybe even radically new approaches
 - Mandatory if ToF should work at and well above 250 GeV i.e. at Linear Collider energies

Summary and outlook

- Successful operation of a fifteen layer stack in two beam tests at DESY
 - Major milestone for technological prototype
 - Demonstration of performance of compact DAQ
 - Rich set of data to study detector performance
 - Have already precious feedback on strong points but also of weak spots
 - The inhomogeneity in the layer response is a matter of concern
 - Debugging has started
- Powerful infrastructure to conduct conclusive system tests now and in coming years
- New type of PCBs will allow for finalising the R&D in terms of power pulsing and for bringing us to the "eve" of an engineering prototype in the next around two years
 - Sufficient support provided ... the team is working at the limit
 - We need in particular more people for data analysis
- Have to make up our minds on the requirements for timing in PFA calorimeters

Backup

Silicon Tungsten electromagnetic calorimeter

Optimized for Particle Flow: Jet energy resolution 3-4%, Excellent photon-hadron separation

The SiW ECAL in the ILD Detector

- O(10⁸) cells
- "No space"
- => Large integration effort

Basic Requirements:

- Extreme high granularity
- Compact and hermetic
- (inside magnetic coil)

Basic Choices:

- Tungsten as absorber material
 - $X_0=3.5$ mm, $R_M=9$ mm, $\Theta=96$ mm
 - Narrow showers
 - Assures compact design
- Silicon as active material
 - Support compact design
 - Allows for pixelisationRobust technology
 - Excellent signal/noise ratio: 10 as design value

- All future e+e- collider projects feature at least one detector concept with this technology
 - Decision for CMS HGCAL based on CALICE/ILD prototypes

Powering concept/management – ILD SiECAL

Zoom into ILD Ecal barrel

- Total average power consumption
 20 kW for a calorimeter system with
 10⁸ cells*
 - Only possible through PP
- The art is to store the power very locally
- Issue for upcoming R&D

*Compare with 140 kW for CMS HGCAL FEE 6x10⁶ cells

Next generation ASICS?

Ch. de la Taille CALICE Meeting, Valencia

- Dynamic gain preamp or TOT ?
- 200 ns shaping, 10 MHz ADC, several samples on the waveform
- Timing capability? Auto-trigger and zero suppression
- Target ~1 mW power/ch and possible power pulsing
- I²C slow control? New readout protocol?
- Include 2.5V LDO inside VFE ?
- Compatible with FCC LAr. SiPM/RPC tbd

		experiment	Sensor	capacitance	shaping	power	data	techno	Vdd	slow control
	SKIROC2	CALICE	Si	30 pF	300 ns	5 mW/ch	5 MHz	SiGe 350n	3.3 V	SPI
	HGCROC	CMS	Si	50 pF	20 ns	20 mW/ch	1.2 Gb/s	TSMC 130n	1.2 V	I ² C
	FCC	LAR	Lar	50-200 pF	200 ns	<1 mW	Gb/s	TSMC 130n	1.2 V	I ² C
	SKIROC3	CALICE	Si	50 pF	200 ns	<1 mW	Mb/S	TSMC 130n	1.2 V	?

CdLT CALICE meeting 20 apr 2022

New FEV2.0 et al.

Status after regular discussions between engineers of LLR, IJCLab, LPNHE and OMEGA

With 600 μ F, we ensure 100mA during 3ms with a voltage drop of 0.5V (Δ V = I.t/C).

REST ACQ ADC READ OUT REST

CURRENT CONSUMPTION

CAPACITANCE SMOOTH RELOAD

- New board for next step of technical realisation of power pulsed Ecal layers
 - Capacitances and LDO close to ASICs
- Last month progress in design
 - Stacking of PCB
 - Choice of components
- Another important feature is that HV will be transported via connectors (i.e. On top of board
 - Wafer supply from bottom of board via plies (copper/kapton)
 - These plies are a delicate piece
 - Risk of shortcuts and wafer damage (the design of the kapton that goes below the board requires another design round)
- Expect production either shortly before or shortly after the summer break (not in a hurry, carefulness comes before speed)
- The setup will be completed by a "Termination card" that will allow for flexible chaining of cards (i.e. No soldering of terminations)
- and for flexible adding of decoupling capacitances (to study noise behaviour of COBs)

Powering concept/management – ILD SiECAL

Demonstrator of large leakless loop for CALICE/ILD ECAL

Upper part of the experiment

- Thermal model as milestone
- Probes at different heights to establish full model of Cooling system for large detectors

Studies for efficient leak detection Ongoing (Polarographic probe)

Final considerations: Powering needs for different running schemes

Power pulsed systems

ILC "Standard"

$$T_{Bunch} \sim 1ms$$

 $f_{rep} \sim 5Hz$
=> ΔT_{Bunch} =200ms

- In the (local) powering scheme the power is reloaded between the bunch trains with a small constant charging current
- As long as one manages to charge the capacitances between the bunch trains, the overall power consumption will not increase with increasing luminosity
 - The step from ILC Standard to HL-ILC doesn't look too big, CLIC may require a further look
 - Of course, the front-end electronics will still dissipate heat, passive cooling should still work

Continuously powered systems:

- Typical consumption of FEE (as of today) 5-10mW/channel
 - CMS HGCROC has 20mW/channel due to sophisticated digital part
- This translates directly into power consumption of detector
- 5mW: For 10⁸ channels this leads to 500 kW power consumption of full detector
 - This is the pure consumption of the front-end electronics (e.g. no ohmic losses in power transfer etc. U=RI and I would be high)
 - => Active cooling

ILD SiECAL – Mechanical structures and studies CALICO

Shower development in CALICE Type Calorimeters

Shower reconstruction

Using the time-space

To figure out the pattern of a shower developed by a charged track or a neutral

We assume that the main direction of the shower, called ζ , is

- along the flight line from interaction to the earliest hit in the Ecal (or globally) for a neutral
- along the track direction at the position of the earliest hit for a charged track

Two perpendicular coordinates, ξ and η , are chosen to optimise the match with the detector axes, mostly for visualisation.

Then t which is much correlated to ζ.

You see immediately the role of the B and how the protons slow down when the pions do not

H. Videau et al., LCWS2021 Roman Pöschl

arxiv:2108.10963

APD

Timing devices – Hardware Studies

T. Suehara CALICE Meeting, Valencia

6-8 Oct. 2021 at ELPH, Tohoku University

3 days × 12 hours positron beam: ~770 MeV

Setup

Discrete amplifier board

Single-cell APDs
2 identical sensors

Waveform output from

Amplifier chip

Time difference between the two APDs (charge > 18 fC)

- GALI-S66+ (Mini-circuit)
- Gain: 20 dB
- Wide bandwidth 3GHz

APD sensor	Cut of charge	Timing resolution
S8664-50K (Inverse type)	> 18 fC	123 ps
	> 36 fC	63 ps
S2385 (reach through type)	> 18 fC	178 ps
	> 36 fC	89 ps

Time difference

Timing resolution of S8664-50K is better

[→] Difference in capacitance related to signal rising time (S8664-50K: 55 pF S2385: 95 pF)

Active cooling?

Passive cooling

Passive cooling ramp example

Passive cooling ramp set up test

Active cooling

Active cooling set up test with water at room temperature

Active cooling test layout (400mmx 300mmx 3mm thick copper plate with 1,800 pipes embedded)