The ultimate CMS ECAL calibration and performance for the legacy reprocessing of LHC Run 2 data

Simone Pigazzini
On behalf of the CMS collaboration

CALOR-2022
Brighton, 16-20 May 2022
From scintillation light to the Higgs boson

Endcaps
PbWO$_4$+VPT

Barrel
PbWO$_4$+APD

Preshower
lead+silicon sensors

10.1007/JHEP03(2021)257
10.1007/JHEP07(2021)027

S. Pigazzini | CALOR-2022
$E_{e,\gamma} = \sum_i [L_i(t) \cdot C_i(t) \cdot A_i(t)] \cdot G(\eta) \cdot F_{e,\gamma}$
Signal amplitude reconstruction

\[E_{e,\gamma} = \sum_i [L_i(t) \cdot C_i(t) \cdot A_i(t)] \cdot G(\eta) \cdot F_{e,\gamma} \]
Signal amplitude reconstruction

- The **signal pedestal and phase are inputs** to the amplitude reconstruction algorithm.
- Pedestal measured from laser events every 40 minutes.
- Time shift corrected every year, **drift during datataking absorbed in the templates** used by the algorithm (1 per channel).
Transparency loss correction

\[E_{e,\gamma} = \sum_i [L_i(t) \cdot C_i(t) \cdot A_i(t)] \cdot G(\eta) \cdot F_{e,\gamma} \]
Transparency loss correction

- Continuous operation of the laser monitoring system has allowed a constant monitoring: **all crystals measured every 40 minutes**.

- **Run2 challenge**: sizable radiation damage in laser transmission fibers and reference diode.

 → **corrected using electrons from W/Z boson decays** and relative measurement w.r.t tracker.
Channel intercalibration and energy scale

\[E_{e,\gamma} = \sum_i [L_i(t) \cdot C_i(t) \cdot A_i(t)] \cdot G(\eta) \cdot F_{e,\gamma} \]
→ Equalize response of channels at same η combining different methods: $Z \rightarrow e^+ e^-$, E/p and $\pi^0 \rightarrow \gamma \gamma$ (in practice: *reduce peak width*).

→ Energy scale vs η corrected in data to match MC using $Z \rightarrow e^+ e^-$ mass peak (in practice: *adjust peak position*).

→ Negligible impact on the energy resolution from intercalibration precision.
Clustering and object level correction

\[E_{e, \gamma} = \sum_i [L_i(t) \cdot C_i(t) \cdot A_i(t)] \cdot G(\eta) \cdot F_{e, \gamma} \]
Clustering and object level correction

- **Energy thresholds** for hits clustering re-tuned to mitigate pile-up and noise contamination. Preshower operation adjusted to cope with irradiation.
- Energy measurement in the **preshower** crucial for particle ID (photon/neutral hadron separation) and EM-shower energy measurement (in the endcaps):
 - Regular response corrections derived using short, **dedicated runs with gain adjusted for m.i.p sensitivity**.

- Object energy corrected for leakage, material effects using a **semiparametric BDT** to provide the ultimate performance for physics analysis.
ECAL performance in Run2

- Excellent energy scale stability crucial in different aspect of the CMS reconstruction:
 - Photon/electron energy resolution and identification (shower description)
 - Jet EM-component measurement.
Run3 outlook
Inclusion of **precise time of flight** ($\sim 20 – 30\text{ps}$) information in the event reconstruction is a goal for the CMS HL-LHC upgrade (Charlotte's talk).

- **ECAL time information will play a crucial role in HL-LHC but not only:**
 - An excellent time resolution already achieved in Run1+Run2, **exploited** in LLP searches.
 - **Run3, Level-1 trigger:** reduction of anomalous signals (APD direct ionization, a.k.a. “spikes”) rate exploiting redundancy feature of existing trigger ASIC.
Encouraging tests of L1 developments

- Topological spike tagger re-optimized using a set of Run2 data with PU conditions close to the Run3 expected ones.

Time-based spike tagging working in CMS, tested using LHC beam splashes.
Calibration of prompt reconstruction in Run3

- The main focus in Run3 will be to improve the mitigation of noise and pile-up related effects → ML-based algorithm (more in Polina’s talk).

- But there’s a catch…
Calibration of prompt reconstruction in Run3

- The main focus in Run3 will be to improve the mitigation of noise and pile-up related effects → ML-based algorithm (more in Polina’s talk).

- But there’s a catch...

- Ultimate performance ~ 40% (= 1 year of work) better than the one with “prompt” calibration.

- Run3 goal: automatize the calibration procedures that rely on collision data to provide the highest quality calibration possible within few days from data-taking.
• Implement each calibration workflow as a **finite state machine**.
• Execute jobs regularly updating conditions when predefined conditions are met.
• Exploit tools from industry deployed by CERN IT: **Openshift, influxdb, Jenkins, HTCondor**.

A new run is injected into the system

Jobs for each workflow are submitted

Jobs run on CAF queues

All jobs completed, the task is marked as done

A new calibration is produced

If requirements are matched (e.g. enough data) the next task is started.

Jobs logged as failed in the DB are resubmitted
Calibration of prompt reconstruction in Run3

- Implement each calibration workflow as a **finite state machine**.
- Execute jobs regularly updating conditions when predefined conditions are met.
- Exploit tools from industry deployed by CERN IT: **Openshift, influxdb, Jenkins, HTCondor**.

A new run is injected into the system

Jobs logged as failed in the DB are resubmitted

Jobs run on CAF queues

All jobs completed, the task is marked as done

A new calibration is produced

\[\rightarrow \] The system is being commissioned with data from cosmics runs.

\[\rightarrow \] Execution monitoring through webpages and dedicated **Mattermost alerts and slash commands**.
Achieving and maintaining an excellent energy resolution on e/γ in CMS has required a constant re-calibration of several inputs to the reconstruction.

Main challenges: radiation induced aging of the PbWO crystals and monitoring system.
Achieving and maintaining an excellent energy resolution on e/γ in CMS has required a constant re-calibration of several inputs to the reconstruction.

Main challenges: radiation induced aging of the PbWO crystals and monitoring system.

Moving forward with Run3:

- More challenges coming from increasing noise and pile-up levels, new ML techniques being explored to cope with them.
- The ECAL community is constantly working to squeeze any bit of performance out of the detector: new developments being tested to improve the L1 trigger.
- A crucial objective for Run3 will be to deploy all calibrations promptly during the data-taking.