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Motivation and goal

Motivation

Geant4 package: prediction of standard calorimetric observables

ionisation losses and electromagnetic showers: percent-level precision

hadronic showers: few percent precision of measured hadron energy for different materials
discrepancies increase with energy and depend on physics list

Topological observables for hadronic showers

important for particle flow reconstruction
and fast simulation (shower libraries)

depend on first interaction simulation and
secondaries production

Geant4 validation with test beam data:
discrepancies increase with hadron energy
and are above 10% for some observables
(e.g. shower transverse size)

MC/Data comparison of radial profiles
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Motivation and goal

Goal

Improvement of validation of simulations

understanding of ”hidden” hadronic shower properties, which cannot be directly measured

prediction of properties of secondaries produced in hadronic showers

A novel approach combines

unique calorimetric observables available in highly granular devices

machine learning technique

Focus on simulations in this talk

pion-induced showers in the scintillator-steel hadron calorimeter (CALICE AHCAL)

single negative pions @ 10–80 GeV, about 500 kevt / energy point
(centrally produced by CALICE DESY group)

Geant4 version 10.3, physics lists:
FTFP BERT HP – currently recommended
QGSP BERT HP – previously recommended

HP (High Precision) – precise neutron models and cross sections for 20 MeV and below
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Highly granular detector model and calorimetric observables

Detector model for simulations: CALICE AHCAL

Scintillator-SiPM analog hadron calorimeter with stainless steel absorber (see details in backup)
long. depth: ∼4.3 nucl. int. length
transverse size: 72×72 cm2

Simulated 80-GeV pion shower

Calibration and MC digitisation

Data

MIP calibration with
test beam muons:
ADC-to-MIP factor,
temperature corrections

cell response equalised
at MIP level

pedestals and SiPM
saturation treated at
cell level

MC

MIP calibration with MC muons:
GeV-to-MIP factor

no simulation of light collection and
photon detection by SiPM,
pixelisation and saturation emulated
in digitisation

digitisation tuned with MC-to-Data
comparisons for muons and
electrons

Reconstruction chain and event selection

cell signals above 0.5 MIP threshold — hits

shower start finder algorithm tuned on MC
for analysis: only events with found shower start
at 3–6 AHCAL layers

no clustering, no hadron energy scale calibration
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Highly granular detector model and calorimetric observables

Calorimetric observables in highly granular calorimeters

Counting observables

Total number of hits, Nhits

Number of isolated hits, Niso [isolation – 0 neighbours in a cube of 3×3×3 cells around the hit]

Number of track hits, Ntrk [defined as having 2 in-line neighbours and MIP-like deposition]

Amplitude observables (ei - energy of hit with coordinates xi , yi , zi ; Nsh - number of shower hits)

Reconstructed energy, Ereco (sum of hit energies)

Mean shower hit energy, 〈ehit〉

Shower radius Rsh =
∑Nsh

i=1 ei ·ri∑Nsh
i=1 ei

, ri =
√

(xi − x0)2 + (yi − y0)2 - hit radial distance from shower axis (x0,y0)

Longitudinal shower centre of gravity ZCoG =
∑Nsh

i=1 ei ·(zi−zstart)∑Nsh
i=1 ei

,

zi - hit longitudinal coordinate, zstart - longitudinal coordinate of shower start

Additional ”ring” observables (integrated over longitudinal depth)

3-cm wide rings around shower axis, consistent with cell transverse size; 12 rings in total

number of hits in a ring, Nring
all ; number of isolated hits in a ring, Nring

iso

energy sum in a ring, E ring
all ; energy of isolated hits in a ring,E ring

iso
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MC-truth variables

MC-truth variables

Parameters of secondaries at generator level are extracted from MCParticle collection

Neutral pions

All π0s are counted independently of their parents (some of them might be from η mesons)

Number of neutral pions in an event, Nπ0

Sum of the energies of neutral pions, Eπ0

The dominated contribution to electromagnetic fraction within a hadronic shower comes from gammas produced
in neutral pion decays.

Neutrons

Not all neutrons are counted. The neutrons are excluded, which have one parent only, which is also neutron (to
avoid double counting)

Number of neutrons from interactions, Nneutron

Sum of kinetic energies of neutrons from interactions, Tneutron

Neutron counting might need improvement and more detailed study with advices from G4 team.
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MC-truth variables

MC-truth: energy spectra of neutral pions in hadronic shower

Legend: 10 GeV, 40 GeV, 80 GeV (∼100 kevt / sample after selections)
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Very different spectra from FTFP and QGSP models above 10 GeV.
Similar behaviour at 10 GeV due to the same Bertini model (BERT) in this energy range.

Marina Chadeeva CALOR 2022, University of Sussex, UK May 19, 2022 8 / 17



Correlations between parameters of secondaries in a shower and calorimetric observables

Number of isolated hits and number of neutrons in a shower at 40 GeV

Legend: FTFP BERT HP, QGSP BERT HP (same number of selected events)

Calorimetric observable: number of isolated hits
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MC truth: number of neutrons
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Correlations between parameters of secondaries in a shower and calorimetric observables

Shower radius and energy of π0s in a shower at 40 GeV

Legend: FTFP BERT HP, QGSP BERT HP (same number of selected events)

Calorimetric observable: shower radius
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Difference between models for both Rsh and Eπ0

Anticorrelation between Rsh and Eπ0

MC truth: energy of π0s
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Deep Neural Network architecture and training

Deep Neural Network architecture for regression model
Goal is to predict parameters of secondaries within a shower using calorimetric observables

Regression model with 29 inputs (calorimetric obsevables)

number of isolated hits in a shower

mean shower hit energy

shower radius

longitudinal shower centre of gravity

number of track hits within a shower

12 energies (E ring
all ) + 12 numbers of iso hits (Nring

iso )

Target: parameter of secondaries, e.g. number of neutrons or energy of neutral pions

Network architecture

TensorFlow library, Keras framework, scikit-learn

number of layers:
1 input, 3 hidden, 1 output

number of neurons:
29/128/64/32/1

activation function:
ReLU for hidden,
linear

(
f(y) = y

)
for output

bias neurons and weighted loss

supervised learning
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Deep Neural Network architecture and training

Deep Neural Network training and optimisation

Hyperparameters

no optimisation, just tests of several options

optimiser: ADAM or NADAM,
both show similar performance

learning rate(lr): from 0.1 to 0.0000001,
better performance with lr ≤ 10−6

batch size(bs): 1, 2, 4, 8, 16 and 32
⇒ events come in batches iteratively
bs = 8 selected as compromise

number of training epochs: about 15
stable behaviour w/o overtraining

Training, validation and test subsamples

full sample after selections: ∼100 kevt
∼60% for training
∼20% for validation
∼20% for test

Huber loss function with weighting

Li =

{
0.5 · X 2

i , |Xi | ≤ 1;

|Xi | − 0.5, |Xi | > 1;

Xi = Y predicted
i − Y true

i , Loss =
1

N
·

N∑
i=1

Wi · Li

N - number of events for training
Wi – event weights from density-based weighting
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Preliminary results of application of DNN-based regression model

Number of neutrons in a shower from 40 GeV pion: distributions

Predictions from DNN trained on QGSP BERT HP or trained on FTFP BERT HP

MC truth from FTFP BERT HP test sample

 40 GeV-π
MC truth:
FTFP_BERT_HP

DNN prediction:
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trained on FTFP_BERT_HP

CALICE AHCAL Simulation G4 v10.3

0

500

1000

1500

2000

E
nt

rie
s 

/ 6
.0

0 50 100 150 200 250 300
Number of neutrons

0.5

1

1.5

D
N

N
 / 

M
C

 T
ru

th

MC truth from QGSP BERT HP test sample

 40 GeV-π
MC truth:
QGSP_BERT_HP

DNN prediction:
trained on QGSP_BERT_HP

trained on FTFP_BERT_HP

CALICE AHCAL Simulation G4 v10.3

0

500

1000

1500

2000

E
nt

rie
s 

/ 6
.0

0 50 100 150 200 250 300
Number of neutrons

0.5

1

1.5

D
N

N
 / 

M
C

 T
ru

th

Mean and r.m.s. of the distributions reproduced at few percent level, reasonable generalisation ability.
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Preliminary results of application of DNN-based regression model

Number of neutrons in a shower from 40 GeV pion: event-by-event comparison

Difference between predicted and true values vs MC truth

MC truth from FTFP BERT HP test sample
trained on FTFP BERT HP
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MC truth from QGSP BERT HP test sample
trained on QGSP BERT HP
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Three most important observables from feature importance studies:
energy in the most central ring around shower axis, number of isolated hits in a shower, shower radius.
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Preliminary results of application of DNN-based regression model

Energy of π0s in a shower from 40 GeV pion: distributions
Predictions from DNN trained on QGSP BERT HP or trained on FTFP BERT HP

MC truth from FTFP BERT HP test sample

 40 GeV-π
MC truth:
FTFP_BERT_HP

DNN prediction:
trained on QGSP_BERT_HP

trained on FTFP_BERT_HP
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Mean and r.m.s. of the distributions reproduced at few percent level, reasonable generalisation ability.
Both DNN models do not reproduce tails of FTFP BERT HP distribution.
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Preliminary results of application of DNN-based regression model

Energy of π0s in a shower from 40 GeV pion: event-by-event comparison

Difference between predicted and true values vs MC truth

MC truth from FTFP BERT HP test sample
trained on FTFP BERT HP

0 5 10 15 20 25 30 35 40 45 50
Energy of neutral pions (MC Truth) [GeV]

60−

40−

20−

0

20

40

60

) 
[G

eV
]

pi
0

T
ru

e
 -

 E
pi

0

D
N

N
(E

0

20

40

60

80

100

120

140

160

180

200

E
ve

nt
s

CALICE AHCAL Simulation G4 v10.3 FTFP_BERT_HP

 40 GeV-π
mean, r.m.s.

MC truth from QGSP BERT HP test sample
trained on QGSP BERT HP
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Three most important observables from feature importance studies:
energy in the most central and next-to-central rings around shower axis, shower radius.
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Summary

Summary

A novel approach is proposed to extract properties of secondaries in hadron-induced showers

Technique: regression model in Deep Neural Network trained using supervised learning

Inputs: 29 calorimetric observables from the highly granular CALICE AHCAL

Target: number of neutrons or energy of neutral pions

Preliminary results of DNN training on 40 GeV pion showers
simulated using FTFP BERT HP and QGSP BERT HP physics lists from Geant4 v10.3:

few percent accuracy in prediction of mean, r.m.s. and asymmetry of distributions
good model-to-model generalisation ability
reasonable performance in event-by-event predictions

Possible applications:
validation of simulation
software compensation

Plans

test the most recent Geant4 versions

test different pion energies

test generalisation ability by combining different energies

apply trained model to data and provide feedback to Geant4 developers
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CALICE AHCAL technological prototype

Scintillator-SiPM analog hadron calorimeter with stainless steel absorber

AHCAL technological prototype

Materials and layout
active: scintillator tiles w/dimple
wrapped in foil and read-out by SiPM
absorber: 2-cm thick steel plates
∼22000 channels, embedded electronics

Longitudinal segmentation and depth
38 active layers
depth ∼4.3 nucl. int. length

Transverse segmentation and size
tile size 3×3×0.3 cm3

plane size 72×72 cm2



MC-truth: spectra of neutron kinetic energy in hadronic shower

Legend: 10 GeV, 40 GeV, 80 GeV (∼100 kevt / sample after selections)
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Different shape of high energy tails from FTFP and QGSP models. Neutron energy cut is set to 1 MeV.
Similar behaviour at 10 GeV due to the same Bertini model (BERT) in this energy range.
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