

L1 triggering on High-Granularity information at the HL-LHC

Louis Portales (LLR, CNRS) on behalf of the CMS Collaboration *CALOR 2022, Brighton – 19/05/2022*

HL-LHC

- LHC will undergo a "High luminosity" phase
 - L = 5 7.5 \times 10³⁴ cm⁻²s⁻¹ and pileup of up to < μ >=200
 - → About x4 LHC !
 - Extreme radiation level, detector occupancy and rates are expected
 - → Challenge for L1 trigger
 - → Must allow to pursue LHC physics program → maintain (at least) Phase 1 trigger thresholds

High Granularity Calorimeter

- CMS Endcap calorimeters replaced by HGCal at HL-LHC
 - "5D" detector
 - → Position + energy + timing
 - Radiation hard & Highly granular:
 - → Hexagonal Silicon (Si) modules in high-radiation region
 - → Scintillating tiles (+ SiPM readout) in lower-radiation region
 - \rightarrow ~ 6M channels in total (~1M used for trigger)
 - Thorough description in talk by Z.Gecse
- HGCal will be part of L1 triggering system
 - Will be used to generate trigger primitives
 - \rightarrow 3D clusters & trigger towers used as input to Level 1 trigger

HGCal Trigger Primitive Generation (TPG)

*One endcap

HGCal TPG – Electronics

*One endcap

HGCal TPG – Stage 1 algorithmic blocks

- Data aligner / unpacker
 - Groups inputs per bunch crossing (BX)
 - Uniformizes (unpacks) data from FE
 - → Variable-size inputs
- Partial tower sums
 - Sums module energies into towers
 - → CE-E / CE-H summed tower energies (pTT)
- TC sorting and truncation
 - Sorting/truncation in (r/z,Φ) bin
 - → Returns N most energetic TCs per bin
- Data formater / packer
 - Reformates data to be sent to stage 2
 - \rightarrow + 18 BX time multiplexing

HGCal TPG – Stage 1 Sorting & truncation

- TCs regrouped in 3D regions of the detector
 - 84 "2D" bins per 120° sector
 - \rightarrow (2 phi regions)x(42 r/z bins)
 - Dedicated sorting and truncation per bin
 - → Optimized regarding both resource requirements and physics impact
- Need efficient sorting algorithm on FPGA
 - Batcher odd-even mergesort algorithm
 - \rightarrow Succession of small sorter and merger blocks
 - → Adapted to FPGA logic & resource-efficient
 - → Adaptable to arbitrary numbers of inputs
- On-the-fly truncation while sorting
 - Fixed output size per bin
 - → Can remove comparators pointing to truncated outputs

HGCal TPG – Stage 1 optimization

- Tuned FE → Stage 1 link mapping
 - Aiming at balancing load per FPGA
 - \rightarrow Achieved equivalent total N_{TC} per FPGA
- Truncation parameters investigated
 - Output N_{TC} limited by Stage 1 \rightarrow Stage 2 bandwidth
 - → Max 420 TC per link (2 links/FPGA) with VU13P
 - Several truncation profiles investigated
 - → **Default**: "PU-driven" truncation
 - Aimed at preserving constant efficiency, truncating as little TCs as possible
 - → **Flat**: equal N_{TC} per bin
 - Better distribution of hardware ressources
 - → Area-weighted: N_{TC} dependant on bin size
 - Heavy truncation in denser (low r/z) regions
 - Area-weighted truncation yields best results
 - → Better overall resolution

8/20

HGCal TPG – Stage 2 algorithmic blocks

- Tower energies
 - Sums Towers from Stage 1
 - → Into map of 20x24 (η,Φ) bins
- TC clustering
 - Histogramming
 - \rightarrow Forms 2D energy map in (r/z, Φ) bins
 - Hit-seed association
 - → Looks for local maxima in histogram
 - → Clusters TCs around maxima
 - Cluster properties
 - → Computes various quantities characterizing the clusters
 - Filter/buffer (if required)
 - → Bandwidth control: selects clusters to be sent to L1T

HGCal TPG – Cluster building

- Histogramming
 - Finer binning in Φ than in Stage 1
 - \rightarrow 42x108 (r/z, Φ) bins, in wider Φ range (180°)
 - Histogram smeared for improved peak finding
- Hit-seed association
 - Local maxima finder + theshold
 - → Bins above threshold become seeds
 - → Evaluate seeds position from TC average
 - Clustering
 - → TCs within ΔR^2 =1 of seed are clustered with R in the (x/z, y/z) plane
- Cluster properties
 - → Build Kinematic & quality information to be sent to L1T
 - → Selected and optimized accounting for hardware constraints

L1T

HGCal TPG – Cluster building optimization

- Clustering parameters tuned
 - Several seeding thresholds considered
 - → **Default**: Area-weighted threshold
 - Area normalization applied in histogram smearing step
 - Yields η-dependent threshold
 - Allowed for ~ constant PU density vs η
 - But found to bring efficiency loss
 - → Constant thresholds (**15,20,25,30 mipT**):
 - Removing area normalization from smearing
 - Restores efficiency at lower η
 - Yield similar rates for e/γ object
 - Further tuning performed/ongoing, e.g.:
 - \rightarrow r/z bin edge definition
 - To reduce artificial shower-splitting effects at high $|\eta|$
 - → Cluster variables encoding
 - Multi-objective optimization (physics impact + resources)

11 / 20

HGCal → L1 Trigger

HGCal TPG part of much larger-scale upgrade

- Calorimeter Trigger
 - → 7-500x (!) improved granularity w.r.t. Phase 1
- Muon Trigger
 - \rightarrow extended to $|\eta| = 2.8$
- Track Trigger
 - → up-to $|\eta| = 2.4$
- HGCal TPG contributes to
 - Global Calorimeter Trigger
 - → Builds standalone e/ γ objects, Calo jets, τ_h and H_T up-to $|\eta| = 3$
 - Correlator Trigger
 - → Combines Calo, muon and track triggers
 - → Implements *advanced reconstruction techniques* (e.g. Pflow, PUPPI) so far limited to offline reconstruction

See also poster by P.Kumar

12 / 20

HGCal → L1 Trigger

HGCal TPG part of much larger-scale upgrade

- Calorimeter Trigger
 - → 7-500x (!) improved granularity w.r.t. Phase 1
- Muon Trigger
 - \rightarrow extended to $|\eta| = 2.8$
- Track Trigger
 - → up-to $|\eta| = 2.4$

HGCal TPG contributes to

- Global Calorimeter Trigger
 - → Builds standalone e/ γ objects, Calo jets, τ_h and H_T up-to $|\eta| = 3$
- Correlator Trigger
 - → Combines Calo, muon and track triggers
 - → Implements *advanced reconstruction techniques* (e.g. Pflow, PUPPI) so far limited to offline reconstruction

PFlow & PUPPI

- → Offline/HLT reconstruction algorithm in CMS
- → Originally Offline PU mitigation algorithm
- → Using vertexing to remove contributions from charged PU
- → Remove/weight-down contribution from neutral PU using *local* information only (event-wide for offline version)
- → Thanks to tracking & vertexing capability, and upgraded L1T hardware and optimized firmware
- → Allow to reconstruct clean, PU-ridden trigger objects
- \rightarrow Up to $|\eta| = 2.4$ (Track trigger + HGCal acceptance)

14 TeV, 200 PU

Endcap 1.5 < Inl < 2.4

PUPPI jet (120 GeV)

16 / 20

Summary

- HGCal will be part of the CMS L1 trigger at HL-LHC
 - Sending Trigger Primitives (Clusters and Towers) to L1T
- The different steps of TPG were improved since the L1T TDR
 - Sorting & truncation of the TCs sent from the Front-end
 - Implementing optimal sorting algorithm in FPGA
 - Optimized TC truncation parameters yielding improved resolution
 - Cluster building from TCs
 - Robust chain in place
 - Fine-tuning of parameters, improved efficiency
- Wide influence of HGCal on L1 trigger performance
 - Both for e/γ and hadronic objects (jets, MET & energy sums)
 - Excellent performances at high $|\eta|$ with the help of tracking information
 - Complementary to PFlow/PUPPI objects at high p_T
- Firmware implementation and hardware tests are ongoing
 - Both for the HGCal TPG and L1T algorithms
 - A large part already implemented/tested
 - More optimizations & new ideas still to come

Back up

ML @ L1 Trigger

Many ML-based improvements

- Constraint by FPGA implementation
 - → Dedicated workflow in place
 - → Already allowed inclusion & test in FW of many algorithms
- Dedicated workflow in place
 - → hls4ml
 - \rightarrow ML model (python) \rightarrow HLS conversion
 - → Allows for model testing directly in firwmare (or firmware emulator)
- Already allowed inclusion & test in FW of many algorithms

