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could be used in Run3 for barrel and endcaps

○ SuperClustering Reconstruction
■ SuperClustering in ECAL
■ GNN for SuperClustering
■ GNN Performance 

○ Energy regression using GNN
■ Energy corrections
■ Dynamic Reduction Network (DRN) 
■ DRN Performance

ECAL detector:

- Hermetic homogeneous calorimeter.

- ~ 76 000 lead tungstate (PbWO4) crystals.

- Crystal size:
Barrel: 2.2 x 2.2 x 23 cm
Endcaps: 3 x 3 x 22 cm

See the talk by F. Ferri:
Ten years of operations of the CMS ECAL
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https://indico.cern.ch/event/847884/timetable/?view=standard#162-ten-years-of-operations-of
https://indico.cern.ch/event/847884/timetable/?view=standard#162-ten-years-of-operations-of


Neural Networks 
Neural Networks are one of the widely used Machine 
Learning algorithms.

The simplest neural network consists of an input, an 
output and one hidden layer. 

If the network has more than one hidden layer, it is 
called Deep Neural Network. 

Network training: 

➢ The input vector is multiplied by a weight matrix 
resulting in an input to a new (hidden) layer. This 
process then can be successively repeated with new 
layers (each time with different weight matrix). 

➢ The result can be extracted from the output of the 
last layer. It is compared with the “right” answer and 
based on the loss function (e.g. Mean Squared 
Error) the weights are adjusted using method called 
backpropagation.
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Example of Deep Neural Network



Graph Neural Networks
➢ Type of neural network that can operate on and analyze graph structures.

➢ Unlike other types of networks GNN can be easily applied on sparse data, doesn’t require padding.

➢ A graph consists of nodes (contain features of the object) and edges (reflect the relationship between the 
nodes).

➢ In GNNs the information can be shared between the neighbors: 

○ The vector features of each node are transformed into “messages” (e.g. using dense layers) that are sent 
to the neighbors (message-passing).

○ In this way, each node learns information about its neighbors and itself. The process is carried out in 
parallel and repeated several times.

4https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial7/GNN_overview.html

nodes

edges 

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial7/GNN_overview.html
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SuperClustering in ECAL 

Rechits

Clusters

SuperClusters

➢ Reconstructed energy deposits left 
by traversing particle in the PbWO4 
crystals of the calorimeter (rechits).

A major step in reconstruction of electron/gamma.

➢ Rechits are gathered together around the crystal with 
highest deposited energy to form clusters. 

➢ Each cluster represents a single particle.
○ Or several overlapping particles.

➢ Due to bremsstrahlung and photon conversion before the ECAL, 
the individual clusters have to be combined together to form a 
SuperCluster. 

➢ The energy of the initial particle can be reconstructed from 
the SuperCluster.
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Mustache SuperClustering 
➢ The algorithm currently used in CMS for reconstruction of 

SuperClusters. 

➢ Purely geometrical approach: 

- All the clusters falling into the specified “mustache” shape would be 

considered as part of the SuperCluster. The size of the area depends 

on energy and position of the seed.

- “Mustache” shape due to the CMS magnetic field (spread along φ). 

➢ High efficiency: the algorithm is able to gather even low-energy 

clusters.

➢ Downside: suffers from pileup (PU) and noise contamination.

➢ Energy regression is further applied that can correct PU and noise 

on average. 

An example of the 
mustache SC distribution 
for electron
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https://iopscience.iop.org/article/10.1088/1748-0221/16/05/P05014

Performance of 
SuperClustering 
and energy 
correction for 
2016 MC 
samples

https://iopscience.iop.org/article/10.1088/1748-0221/16/05/P05014


GNN for ECAL SuperClustering
New algorithm for SuperClustering: DeepSuperCluster ML model

➢ Based on Graph Neural Network. It can receive and combine the information from all the clusters in the window.

➢ Maintains the efficiency while improving PU and noise rejection. 

For the training and testing the dataset was created:
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➢ Electrons and photons are generated uniformly in pT = [1,100] GeV. 

➢ PU uniformly distributed between [55,75] interactions is used.

➢ Windows are opened around all the clusters with ET > 1 GeV (seeds). 

○ Window dimensions are η-dependent. 

○ The model has to process each window and give a prediction for it. 

➢ The inputs for the model are: 

○ Cluster information (E, ET, η, φ, z, number of crystals, relative to seed: 
is_seed_flag, Δη, Δφ, ΔE, ΔET).

○ List of Rechits for each cluster.

○ Summary window features (max, min, mean of the crystal variables: ET, E,  Δη, 

Δφ, ΔE, ΔET)

➢ The outputs: cluster classification (in/out of SC), window classification 
(electron/photon/jet), energy regression.



GNN for ECAL SuperClustering architecture
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Inputs

Trainable 
layers

Tensors with 
dimensions

Outputs

Tensor flow

Concatenation

Aggregation (sum 
over clusters 
dimension)

- W : number of windows in 
the batch

- N: number of clusters 
- R: number of rechits
- [X,Y,Z] tensor dimension 

Skipped 
connection



Performance: energy resolution
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The DeepSC algorithm shows significantly improved resolution, particularly for low ET signals and at high PU.

Resolution of the reconstructed uncorrected SuperCluster energy (ERaw) divided by the true energy deposits in 
ECAL (ESim) versus:

- the transverse energy of the gen-level particle ET
Gen (left)

- the gen-level particle position |ηGen | (center)
- the number of simulated PU interactions (right)

The resolution is computed as half of 
the difference between the 84%
quantile and the 16% quantile (one σ) 
of the ERaw /ESim distribution in each 
bin.

The lower panel shows the ratio of the 
resolution of the two algorithms:

σDeepSC / σMustache



Particle identification
➢ Same network can be used to identify the flavor of the particle.
➢ An extra sample containing jets was generated (same energy/PU as for electron/photon sample).  
➢ The goal is to identify the clusters belonging to jets. 
➢ In order to avoid the performance degradation for electrons/photons in terms of cluster selection, Transfer 

Learning was used to re-train only the ID part of the network.
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Likelihood to be predicted as jet (score) for the 
jet and photon sample.

Likelihood to be predicted as electron (score) 
for the photon and electron sample.



Performance: particle identification
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➢ ROC curve obtained from the discriminator for jet vs. photon for ET = [40, 50] GeV (left).

➢ Summary performance obtained by calculating Area Under the ROC curve (AUC) for different energy ranges (right). 

High performance for jet vs. photon discrimination. 

➢ AUC levels for photon vs. electron discriminator are ~63%. 

➢ Only ECAL variables are used. 

➢ The output of the model can be used in the global event reconstruction of CMS.
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Energy corrections using Dynamic Reduction Network

➢ After SuperClusters are formed, energy correction has to be applied
○ Account for energy lost in gaps and upstream material, longitudinal 

energy leakage, finite thresholds to suppress noise and unclustered energy.

➢ Currently done per particle using Boosted Decision Trees with a
semiparametric regression.

○ Uses ~30 high-level input features to describe electromagnetic shower.
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JINST 16 (2021) P05014

New Machine-Learning algorithm developed: graph-based 

Dynamic Reduction Network (DRN).

➢ Allows learning on low-level detector features (rechits) associated with a given particle.

➢ Input includes RecHits from both ECAL and ECAL preshower (ES), as well as additional features to 
describe information not encoded in the hit collection (pileup, leakage into HCAL). 

https://iopscience.iop.org/article/10.1088/1748-0221/16/05/P05014


Dynamic Reduction Network
➢ Input features (rechits) are transformed into high dimensional latent space.

➢ Graphs are dynamically generated in the latent space (recomputed at each iteration).

➢ The graph convolutions are performed (includes message-passing).

➢ The information is aggregated over the graph using clustering and pooling. 

Input: Rechit features (energy, x, y, z).

Output: Predict probability density of energy correction value. 
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Energy correction: performance
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Mean response EPred /ETrue estimated with Dynamic Reduction Network (DRN) and Boosted Decision Tree (BDT) performance in the 
ECAL barrel (left) and endcaps (right) as a function of transverse momentum. 

Performance evaluated on photon gun simulation with ideal detector calibration. 
Error bars represent fitting uncertainties. 

The DRN obtains a better resolution than the BDT by a factor of ≈ 10% at all values of pT.



Energy correction: performance
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Di-photon invariant mass distributions of H→γγ events in 2018 Legacy simulation for both the Dynamic Reduction Network (DRN) 
and Boosted Decision Tree (BDT) architectures. 

The Higgs peak is fit with a Cruijff function to parameterize the detector response and resolution. 

The DRN obtains an improved resolution with respect to the BDT by a factor of about 5% in both detector regions.



Conclusion

➢ Graph Neural Networks are new advanced algorithms for the calorimeter 
reconstruction.

➢ The implementations and the performances are shown with application to various 
tasks: 

○ Particle reconstruction and identification in ECAL.

○ Energy correction of the electrons and photons in ECAL. 

➢ All of them show significant improvement w.r.t. Run-2 algorithms.

➢ The goal is to use the presented algorithms during the Run-3 and beyond. 
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Backup
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Discrimination photon vs. electron
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ROC curve for photon vs. electron 
sample in the energy range [40, 50] GeV Summary AUC plot for photon vs. electron

ROC curve and AUC summary obtained using the ID output of DeepSC model.
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Dynamic Reduction Neural (DRN) network

➢ This DRN model is trained on a flat energy sample of 10-350 GeV with a total of 4.1M events 
simulated using GEANT4 v10.4.3 and FTFP BERT EMN hadronic physics list.

○ Out of 39 sampling layers of AHCAL, only 10 layers are sampled (consistent with the final HGCAL geometry).

➢  The loss functions is defined as   

➢ A constant learning rate of 10-4 is used & time taken to train the model per epoch for 4M events is  ~30 mins using 4 
V100 GPU cards with 16 GB of memory each with data parallelism of pytorch.

where ETrue is true energy of particle, Efix is reconstructed energy using detector level calibration and  EPred is 
the energy reconstruction using DRN weights.

Input features: (E, x, y, z) of rechits
Model target:    ETrue/Efix

Model output: EPred/Efix

Exploiting the imaging power of the detector by using measured energy and position of each readout cell 



Graph Neural Network architecture - I

Rechits 
Graph 
Convolution 
Network

Rechits 
summary vector

1. Get the summary vector features for the rechits of each cluster in the window.

2. Extract the latent features for every cluster.
Cluster 
features

Rechits 
summary 
vector

+
Dense 
Neural 
Network

3. Get the adjacency matrix for clusters in the window and share the features between clusters in 
one window.

Cluster 
features vector

Self-Attention 
layer

Adjacency 
matrix

+

Graph 
Highway 
Network
+
Self-attention 
layer

Latent cluster 
features
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Cluster 
features vector

Cluster 
features vector



Graph Neural Network architecture - II

Dense 
Neural 
Network

Cluster 
classification

4. Get the classification output (in/out of SC) for each cluster in the window.

5. Get the window classification (photon/electron) based on combined window features. 

6. Get the energy regression factor.

Self-attention 
layer

Cluster features 
vector

Latent cluster 
features

+
Combined 
latent window 
features

Window 
features

+
Dense 
Neural 
Network

Window 
classification

Cluster features 
vector

Latent cluster 
features

Rechits summary 
vector

Window 
classification+
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+ +
Dense 
Neural 
Network

Energy 

Cluster features 
vector

Latent cluster 
features

+



Cruijff function
Centered Gaussian with different left-right resolutions and non-Gaussian tails

f(x) = exp((x-m)2/(2σ2
L,R + αL,R(x-m)2))
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