

Inorganic Scintillators for Future HEP Experiments Chen Hu, Liyuan Zhang, Ren-Yuan Zhu California Institute of Technology

May 16, 2022

Presented in the CALOR 2022 Conference, University of Sussex, Brighton, UK

Why Inorganic Scintillators?

- Precision photons and electrons enhance physics discovery potential in HEP experiments.
- Performance of crystal calorimeters is well understood for e/γ , and is promising for jets measurements :
 - The best possible energy resolution and position resolution;
 - Good e/γ identification and reconstruction efficiency;
 - Excellent jet mass resolution with dual readout, either C/S and F/S gate.
- Challenges at future HEP Experiments:
 - Radiation hard scintillators at the energy frontier: HL-LHC and FCC-hh;
 - Ultra-fast scintillators at the intensity frontier: Mu2e-II;
 - Cost-effective crystals for Higgs factory.

on Instrumentation: Calorimetry

Priority Research Direction

PRD 1: Enhance calorimetry energy resolution for precision electroweak mass and missing-energy measurements

PRD 2: Advance calorimetry with spatial and timing resolution and radiation hardness to master high-rate environments

PRD 3: Develop ultrafast media to improve background rejection in calorimeters and improve particle identification

Fast/ultrafast, radiation hard and cost-effective inorganic scintillators needed to achieve energy, spatial and timing resolution for future HEP calorimetry

Fast and Ultrafast Inorganic Scintillators

Snowmass 2022 White Paper: https://doi.org/10.48550/arXiv.2203.06788

	BaF ₂	BaF ₂ :Y	ZnO:Ga	YAP:Yb	YAG:Yb	β-Ga ₂ O ₃	LYSO:Ce	LuAG:Ce	YAP:Ce	GAGG:Ce	LuYAP:Ce	YSO:Ce
Density (g/cm³)	4.89	4.89	5.67	5.35	4.56	5.94	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	1975	1870	1940	1725	2050	2060	1870	1850	1930	2070
X ₀ (cm)	2.03	2.03	2.51	2.77	3.53	2.51	1.14	1.45	2.77	1.63	1.37	3.10
R _M (cm)	3.1	3.1	2.28	2.4	2.76	2.20	2.07	2.15	2.4	2.20	2.01	2.93
λ _ι (cm)	30.7	30.7	22.2	22.4	25.2	20.9	20.9	20.6	22.4	21.5	19.5	27.8
Z _{eff}	51.6	51.6	27.7	31.9	30	28.1	64.8	60.3	31.9	51.8	58.6	33.3
dE/dX (MeV/cm)	6.52	6.52	8.42	8.05	7.01	8.82	9.55	9.22	8.05	8.96	9.82	6.57
λ _{peak} ^a (nm)	300 220	300 220	380	350	350	380	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.1	1.96	1.87	1.97	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	6.6 ^d	0.19 ^d	0.36 ^d	6.5 0.5	100	35° 48°	9 32	115	16 15	80
Total Light yield (ph/MeV)	13,000	2,000	2,000 ^d	57ª	110ª	2,100	30,000	25,000°	12,000	34,400	10,000	24,000
Decay time ^a (ns)	600 0.5	600 0.5	<1	1.5	4	148 6	40	820 50	191 25	53	1485 36	75
LY in 1 st ns (photons/MeV)	1200	1200	610 ^d	28 ^d	24 ^d	43	740	240	391	640	125	318
LY in 1 st ns/Total LY	9.2%	60%	31%	49%	22%	2.0%	2.5%	1.0%	3.3%	1.9%	1.3%	1.3%
40 keV Att. Leng. (1/e, mm)	0.106	0.106	0.407	0.314	0.439	0.394	0.185	0.251	0.314	0.319	0.214	0.334

^a top/bottom row: slow/fast component; ^b at the emission peak; ^c normalized to LYSO:Ce; ^d excited by alpha particles; ^e ceramic with 0.3 Mg at% co-doping; ^f density for composition Lu_{0.7}Y_{0.3}AlO₃:Ce See C. Hu in this conference

May 16, 2022

LYSO:Ce for CMS Barrel Timing Layer

MTD performance goal: 30-40 ps at the start degrading to < 60 ps at 3000 fb⁻¹ Barrel Timing Layer: arrays of LYSO crystal bars connected to SiPMs at both ends and readout by TOFHIR Ultrafast inorganic scintillators would help to break the pico-second time barrier BTL: LYSO bars + SiPM read-out CMS ► TK / ECAL interface ~ 45 mm thick |n| < 1.45 and $p_T > 0.7$ GeV ► Active area ~ 38 m² ; 332k channels ► Fluence at 3 ab⁻¹: 2×10¹⁴ n_{eg}/cm² ETL: Si with internal gain (LGAD) ▷ On the HGC nose ~ 65 mm thick ► 1.6 < |η| < 3.0 ► Active area ~ 14 m²; ~ 8.5M channels ► Fluence at 3 ab⁻¹: up to 2×10¹⁵ n_{ea}/cm² LYSO + SiPM with Thermal Electric Cooler (TEC) for CMS Barrel Timing Layer (BTL) in construction Mockup 01-0021

SiPM array prototypes from FBK

Presented by Ren-Yuan Zhu of Caltech in the 2022 Carlo Conference, University of Sussex, Brighton, UK

May 16, 2022

5

LYSO Radiation Hardness

See IEEE TNS 63 (2016) 612-619 (2016) and L. Zhang in this conference

CMS LYSO spec: RIAC < 3 m⁻¹ after 4.8 Mrad, 2.5 x 10^{13} p/cm² and 3.2 x 10^{14} n_{eq}/cm²

Damage induced by protons is a factor of ten larger than that from neutrons Due to ionization energy loss in addition to displacement and nuclear breakup

May 16, 2022

LuAG:Ce Ceramics Radiation Hardness

IEEE TNS 69 (2022) 181-186

LuAG:Ce ceramics show a factor of two smaller RIAC values than LYSO:Ce up to $6.7 \times 10^{15} n_{eq}$ /cm² and $1.2 \times 10^{15} p$ /cm², promising for FCC-hh

R&D on slow component suppression by Ca co-doping, and radiation hardness by $\gamma/p/n$

May 16, 2022

RADICAL: LYSO/LuAG Shashlik ECAL

See R. Ruchti in this conference

Excitation of LuAG:Ce ceramics matches well LYSO:Ce emission:

RADiCAL RADiation hard innovative CALorimetry

May 16, 2022

Mu2e Calorimeter Requirements

CsI+SiPM

See S. Miscetti in this conference

Energy resolution	σ < 5% (FWHM/2.36) @ 100 MeV
 Time resolution 	σ < 500 ps
 Position resolution 	σ < 10 mm
 Radiation hardness Crystals Photosensors 	1 kGy/yr and a total of 10 ¹² <i>n</i> _1 MeV equivalent/cm ² total 3 x 10 ¹¹ <i>n</i> _1 MeV equivalent/cm ² total

Mu2e-I: 1,348 CsI of 34 x 34 x 200 mm³

Mu2e-II: 1,940 BaF₂:Y

Mu2e-II: arXiv:1802.02599

PIP-II/Mu2e-II: higher rates (~x3) and duty factor from and correspondingly higher ionizing radiation (10 kGy/yr) and neutron levels (10¹³ n_1 MeV equiv/cm² total), which are particularly important at the inner radius of disk 1

Ultrafast and Radiation Hard BaF₂

 BaF_2 has an ultrafast scintillation component @ 220 nm with 0.5 ns decay time and a much larger slow component @ 300 nm with 600 ns decay time.

Slow suppression may be achieved by rare earth doping, and/or solar-blind photo-detectors

BaF₂ shows saturated damage from 10 krad to 100 Mrad, indicating good radiation resistance against γ-rays

 $\begin{array}{l} \text{BaF}_2 \text{ also survives after proton} \\ \text{irradiation up to } 9.7 \times 10^{14} \text{ p/cm}^2, \\ \text{ and neutron irradiation up to} \\ 8.3 \times 10^{15} \, n_{\text{eq}}/\text{cm}^2 \end{array}$

May 16, 2022

May 16, 2022

BaF₂:Y for Ultrafast Calorimetry

Increased F/S ratio observed in BGRI BaF₂:Y crystals: Proc. SPIE 10392 (2017)

EWLT

300 nm

89.9%

89.5%

87.1%

88.4%

88.3%

450

EWLT

220 nm

88.1

84.4%

82.5%

85.0%

84.4%

295

Time (ns)

300

 Theoretical limit of transmittance

400

X-ray bunches with 2.83 ns spacing in septuplet are clearly resolved by ultrafast BaF_2 : Y and BaF_2 crystals: for GHz Hard X-ray Imaging NIMA 240 (2019) 223-239

Gamma-ray Induced Readout Noise RIN:y

BaF₂ crystals wrapped by Tyvek with an air gap coupling to a Hamamatsu PMT R2059, were irradiated by Co-60 with dose rates of 2 and 23 rad/h

$$F = \frac{\frac{Photocurrent}{Charge_{electron} \times Gain_{SiPM}}}{Dose \ rate_{\gamma-ray} \ or \ Flux_{neutron}} \quad \sigma = \frac{\sqrt{Q}}{LO} \quad (MeV)$$

QE/PDE of four VUV photodetectors for BaF₂ and BaF₂:Y, IEEE TNS **69** (2022) 958-964

May 16, 2022

Presented by Ren-Yuan Zhu of Caltech in the 2022 Carlo Conference, University of Sussex, Brighton, UK

The HHCAL Concept

Corrected jet response and energy resolution, energy dependence 600

300

250

200

100 E

1000

800

800

400

200

100 cm

20

Corrected energy, 20 GeV

22.5

500

400

300

200

100

1600 1400

Corrected energy, 50 GeV

A. Para, H. Wenzel, and S. McGill in Callor2012 Proceedings and A. Benaglia *et al.*, IEEE TNS **63** (2016) 574-579: a jet energy resolution at a level of 20%/ \sqrt{E} by HHCAL with dual readout of S/C or dual gate. M. Demarteau, 2021 CPAD Workshop

5x5 cm

10

Inorganic Scintillators for HHCAL

Snowmass 2022 White Paper: https://doi.org/10.48550/arXiv.2203.06788

	BGO	BSO	PWO	PbF ₂	PbFCI	Sapphire:Ti	AFO Glass	BaO·2SiO ₂ Glass ¹	HFG Glass ²
Density (g/cm ³)	7.13	6.8	8.3	7.77	7.11	3.98	4.6	3.8	5.95
Melting point (°C)	1050	1030	1123	824	608	2040	980 ³	1420 ⁴	570
X ₀ (cm)	1.12	1.15	0.89	0.94	1.05	7.02	2.96	3.36	1.74
R _M (cm)	2.23	2.33	2.00	2.18	2.33	2.88	2.89	3.52	2.45
λ _ι (cm)	22.7	23.4	20.7	22.4	24.3	24.2	26.4	32.8	23.2
Z _{eff} value	72.9	75.3	74.5	77.4	75.8	11.2	42.8	44.4	56.9
dE/dX (MeV/cm)	8.99	8.59	10.1	9.42	8.68	6.75	6.84	5.56	8.24
Emission Peak ^a (nm)	480	470	425 420	٨	420	300 750	365	425	325
Refractive Index ^b	2.15	2.68	2.20	1.82	2.15	1.76	١	١	1.50
Relative Light Output by PMT ^{a,c}	100	20	1.6 0.4	٨	2.0	0.2 0.9	2.6	5.0 4.0	3.3 6.1
LY (ph/MeV) ^d	35,000	1,500	130	١	150	7,900	450	3,150	150
Decay Time ^a (ns)	300	100	30 10	١	3	300 3200	40	180 30	25 8
d(LY)/dT (%/°C) ^d	-0.9	?	-2.5	١	?	?	?	-0.04	-0.37
Cost (\$/cc)	6.0	7.0	7.5	6.0	?	0.6	?	?	?

a. Top line: slow component, bottom line: fast component.

b. At the wavelength of the emission maximum.

c. Relative light yield normalized to the light yield of BGO

d. At room temperature (20°C) with PMT QE taken out.

May 16, 2022

Presented by Ren-Yuan Zhu of Caltech in the 2022 Carlo Conference, University of Sussex, Brighton, UK

Low density crystals/glasses

Cost-Effective Sapphire Crystals for HHCAL

Large sapphire crystal of 400-450 kg

Prof. Xu Jun of Tongji University: Sapphire crystals by Kyropoulos (KY) technology A producer can grow 1,000 tons ingots annually with 400 to 450 kg/ingot Cost of mass-produced Sapphire crystals including processing: less than \$1/cc

	Weight (kg)	Size (cm)	Unit Price	Comment
ingot boule	400	Ф50×55	US\$12000/pc	for undoped
cutting/polishing	4	1×1×1	~US\$0.6/cc	for undoped

May 16, 2022

Sapphire:Ti Emission and Transmittance

A weak emission at 325 nm with 150 ns decay time A strong emission at 755 nm with 3 μ s decay time

ID	Dimension (mm³)	#	Polishing	
Tongji Al ₂ O ₃ :Ti-1,2	10×10×4	2	Two faces	
Tongji Al ₂ O ₃ :C-1,2	Φ7×1	2	Two faces	
Tongji Lu ₂ O ₃ :Yb	6.4×4.8×0.4	1	Two faces	
Tongji LuScO ₃ :Yb	Φ4.8×1.3	1	Two faces	

May 16, 2022

Summary

The HL-LHC and FCC-hh require fast and radiation hard calorimetry. The **RADiCAL** concept uses radiation hard LuAG:Ce ceramics as wavelength shifter for LYSO:Ce crystals for an ultracompact, fast timing and longitudinally segmented shashlik calorimeter. Undoped BaF₂ crystals provide ultrafast light with sub-ns decay time and a good radiation hardness up to 100 Mrad. Yttrium doping suppresses its slow light and promises a **ultrafast calorimeter**. R&D is needed for optimizing yttrium doping and radiation hardness in large size BaF₂:Y crystals for Mu2e-II. Solar-blind VUV photo-detectors are also needed to control radiation induced readout noise. The longitudinally segmented **Calvision** crystal ECAL with dual readout combined with the

IDEA HCAL promises excellent EM and Hadronic resolutions for the Higgs factory.

Homogeneous HCAL (HHCAL) promises the best jet mass resolution by total absorption.

R&D is needed for cost-effective mass-produced inorganic scintillators.

Novel inorganic scintillators are needed for all these novel calorimeter concepts

Acknowledgements: DOE HEP Award DE-SC0011925