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DARK ENERGY

Cosmological Constant (or more complicated GR modification) 
Gravitational Backreaction 
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PRIMORDIAL BLACK HOLES

PBHs are the least exotic beast in the dark universe zoo of theories 

PBHs are a viable DARK MATTER candidate 
* careful with old constraints in the literature! 

PBHs are interesting even if they are not all DARK MATTER  
* PBHs can be used to test QUANTUM GRAVITY
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IN THIS TALK: QUANTUM GRAVITY

1. QG makes PBH remnants stable 
* Quantum Gravity: minimal aerea  

2. QG cures GR singularities 
* NO central BH singularity, NO cosmological singularity: instead a bounce 

3. QG allows for Black-to-White tunnelling  
* Decay happens faster than the Hawking evaporation: new phenomenology 

3 different scenarios discussed in this talk  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u(r, n }=e
(2.4)

In
terms

ofthese
fields

the
Lagrangian

is

S=f & —g
[ —

uR+2u
(Ba) —4(Bu) —

2u
e

+Que
(2.5)

The
equations

of motion
forthis

Lagrangian
are

given
in

Appendix
A.

Ofcourse,
to

find
interior

solutions
with

zero
magnetic

field
to
match

onto
the

exterior
extremal

dilaton
solution,

we
setQ =0

in
the

above
equation.

The
power

series
for

the
fields

o
and

(t, expanding
from

the
shell towards

the
interior,

is

2

u(r, n) =R
(~) 1—

R
(~)

[1+f, (r)n +f2(r)n
~

+f3(r)n
+

],
o(r, n

) =
[ln(R

(r)}+d, (r)n +d2(~)n
+d3(~)n

+
],

(2.6)

(2.7)

h(r, n)=1+h&(r)n+h2(r)n
+h3(r)n

+
g(r, n)=1+g,(r)n+g2(r)n

+g3(r)n
+

(2.8)

(2.9)
The

equations
that

we
have

to
describe

this
system

now
consistofthe

equations
for

u
and

o., and
the

stress
tensor

equation.
Atthe

boundary
ofthe

collapsing
shellthere

is
a nontrivial

matching
equation

forthe
stress

tensor
com-

ponent
Too.

W
e
will

assume
that

the
classical

Lagrangian
for

the
matter

thatconstitutes
the

shell
isofthe

form

S =f &
gu'[ —(a~)— '—m'~'+

].
(2.10)

That
is, the

matter
in
the

collapsing
shell

couples
to
the

dilaton
like

some
massive

mode
ofthe

string.
In
the

rest
frame

of
the

collapsing
shell,

the
matching

equation
readsMu(r,0) =f

Tor, dn
E

which
becomes

2
1/2

(2. 11)

where
the

coefficients
ofthe

leading
terms

are
determined

by
continuity

ofP
and

cracross
the

shell.
The

metric
is

g&
=diag[ —

h(r,n),g(r, n)
], and

the
coefficients

have
the

expansion,

tion,
but

here
the

dilaton
dynamics

gives
rise

to
an

infinite
set

of
spherically

symmetric
solutions

of
the

source
free

field
equations

in
a
finite

region.
W
e
have

tried
to
restrict

the
solution

by
assuming

a
cosmological

form
for

the
metric

ds = —dH+a(r)
(dr+r

dQ
) in-

side
the

shell,
but

this
isinconsistent

with
the

field
equa-

tions.
Similarly,

an
attempt

to
keep

the
three-

dimensionally
conformally

Oatform
ofthe

metric,
with

conformal
factor

tied
to
the

dilaton,
isinconsistent.

W
e

have
not

been
able

to
come

up
with

a
natural

ansatz.
Nonetheless,

we
believe

that
smooth

solutions
exist.

There
are

many
smooth

solutions
of the

vacuum
field

equations
restricted

to
a
manifold

with
the

topology
ofa

hemi-three-sphere
cross

time.
Our

matching
conditions

fix
only

the
values

ofthe
metric

functions
and

dilaton
along

the
timelike

world
lineofthe

collapsing
shell,

leav-
ing

their
normal

derivatives
undetermined.

Thus
there

seems
to
be
plenty

ofroom
forpatching

in
anonsingular

vacuum
solution.

To
obtain

some
feeling

forthe
motion

ofthe
collapsing

shell
we

have
made

the
fairly

arbitrary
assumption

that

a
fi(r)—

(2.13)

This
gives

us
a
single

first-order
ordinary

differential
equation

for
R(r).

The
solution

so
obtained

behaves
likeR(r)=Q+e

r',
as ~~oo.

W
e
can

then
use

this
solution

to
check

that
the

other
coefficient

functions,
to

leading
order,

are
well

behaved
for

all
finite

values
of~.

W
e
can

continue
this

procedure
perturbatively,

to
verify

that
the

coefficients
in
the

expansion
in
powers

of
n
are

smooth
functions

of~.Ofcourse, this
demonstration

ofa
smooth

perturbation
expansion

around
the

shell, doesnot
guarantee

the
existence

ofan
everywhere

smooth
solu-

tion.
W
econtinue

to
search

fora sensible
ansatz

that
will

enable
us

to
demonstrate

explicitly
the

existence
of

a
smooth

collapsing
solution,

but
we

feel
confident

that
such

a solution
exists.

The
collapsing

solution
that

we
have

described,
begins

asa
dimple

on
Aatspace.

Atany
finite

time
after

its for-
mation,

it
will

have
the

geometry
shown

in
Fig. 2.

W
e

will
refer

to
such

an
object

as
a
finite

volume
cornu-

copion.
Itisasolution

ofthe
field

equations
that

isstatic
over

mostofspace.
The

time
dependence

occurs
only

in
the

tip ofthe
horn.

Mu(r, 0) =R
1—

2R
R
+

1 —
—R

(2. 12)

Atthis
point

we
must

be
more

specific
about

the
fields

on
the

interior
ofthe

shell.
In
Einstein

stheory,
there

is
aunique

spherically
symmetric

nonsingular
vacuum

solu-

FIG.2.Instantaneous
snapshot

ofacollapsing
cornucopion.

7SeeAppendix
8
fordetails.

8The
fulldetails

ofthe
derivation

are
in
Appendix

B.
9Appendix

C.
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FIG. 2. The interior geometry of an old black hole: a very
long thin tube, whose length increases and whose radius de-
creases with time. Notice it is finite, unlikely the Einstein-
Rosen bridge.

the two regions A and B where classical general relativity
becomes unreliable.
Region A is characterised by large curvature and covers

the singularity. According to classical general relativity
the singularity never reaches the horizon. (N.B.: Two
lines meeting at the boundary of a conformal diagram
does not mean that they meet in the physical spacetime.)
Region B, instead, surrounds the end of the evapora-

tion, which involves the horizon, and a↵ects what hap-
pens outside the hole. Taking evaporation into account,
the area of the horizon shrinks progressively until reach-
ing region B.
The quantum gravitational e↵ects in regions A and B

are distinct, and confusing them is a source of misun-
derstanding. Notice that a generic spacetime region in
A is spacelike separated and in general very distant from
region B. By locality, there is no reason to expect these
two regions to influence one another.
The quantum gravitational physical process happening

at these two regions must be considered separately.

III. THE A REGION: TRANSITIONING
ACROSS THE SINGULARITY

To study the A region, let us focus on an arbitrary
finite portion of the collapsing interior tube. As we ap-
proach the singularity, the Schwarzschild radius rs, which
is a temporal coordinate inside the hole, decreases and
the curvature increases. When the curvature approaches
Planckian values, the classical approximation becomes
unreliable. Quantum gravity e↵ects are expected to
bound the curvature [7–10, 12–18, 21–23, 26, 28, 59, 60].
Let us see what a bound on the curvature can yield. Fol-
lowing [61], consider the line element

ds
2 = �4(⌧2 + l)2

2m� ⌧2
d⌧

2+
2m� ⌧

2

⌧2 + l
dx

2+(⌧2+l)2d⌦2
, (4)

where l⌧m. This line element defines a genuine Rieman-
nian spacetime, with no divergences and no singularities.
Curvature is bounded. For instance, the Kretschmann

FIG. 3. The transition across the A region.

invariant K ⌘ Rµ⌫⇢�R
µ⌫⇢� is easily computed to be

K(⌧) ⇡ 9 l2 � 24 l⌧2 + 48 ⌧4

(l + ⌧2)8
m

2 (5)

in the large mass limit, which has the finite maximum

K(0) ⇡ 9m2

l6
. (6)

For all the values of ⌧ where l ⌧ ⌧
2
< 2m the line

element is well approximated by taking l = 0 which gives

ds
2 = � 4⌧4

2m� ⌧2
d⌧

2 +
2m� ⌧

2

⌧2
dx

2 + ⌧
4
d⌦2

. (7)

For ⌧ < 0, this is the Schwarzschild metric inside the
black hole, as can be readily seen going to Schwarzschild
coordinates

ts = x, and rs = ⌧
2
. (8)

For ⌧ > 0, this is the Schwarzschild metric inside a white
hole. Thus the metric (4) represents a continuous transi-
tion of the geometry of a black hole into the geometry of
a white hole, across a region of Planckian, but bounded
curvature.
Geometrically, ⌧ = constant (space-like) surfaces foli-

ate the interior of a black hole. Each of these surfaces
has the topology S2 ⇥ R, namely is a long cylinder. As
time passes, the radial size of the cylinder shrinks while
the axis of the cylinder gets stretched. Around ⌧ = 0
the cylinder reaches a minimal size, and then smoothly
bounces back and starts increasing its radial size and
shrinking its length. The cylinder never reaches zero size
but bounces at a small finite radius l. The Ricci tensor
vanishes up to terms O(l/m).
The resulting geometry is depicted in Figure 3. The

region around ⌧ = 0 is the smoothing of the central black
hole singularity at rs = 0.
This geometry can be given a simple physical interpre-

tation. General relativity is not reliable at high curva-
ture, because of quantum gravity. Therefore the “pre-
diction” of the singularity by the classical theory has no
ground. High curvature induces quantum particle cre-
ation, including gravitons, and these can have an e↵ec-
tive energy momentum tensor that back-reacts on the

LARGE INTERNAL VOLUME ~ Mo4  
It depends only on the original mass Mo at the BH formation  
 

REMNANT LIFETIME ~ Mo4 
Time for information to leak out from such a large volume trough the small WH surface.

Bianchi, Cristodoulou, D’Ambrosio,  
Haggard, Rovelli 1802.04264
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(22)
where we have added also a diagonal energy term propor-
tional to the mass in order to obtain the standard energy
phase evolution, and c and b are constants of order unit.

We now ask what are the stable or semi-stable states
of the hole as seen from the exterior.

A macroscopic black hole with mass m much larger
than the Planck mass mP =

p
~ is stable when seen from

the exterior for a (long) time span of the order m
3
/~,

which is the Hawking evaporation time. The stability
is due to the fact that process (1) does not a↵ect the
exterior, process (2) does not concern black holes and
process (4) is strongly suppressed for macroscopic holes.

A macroscopic white hole, on the other hand, is not so
stable, because of the fast instability of process (2). As
basic physics is invariant under time reversal, one may
wonder what breaks time reversal invariance here. What
breaks time reversal invariance is the notion of stability
that we are using. This is a stability under small fluc-
tuations of the past boundary conditions. If instead we
asked about stability under small fluctuations of the fu-

ture boundary conditions, we would obviously obtain the
opposite result: macroscopic white holes would be stable
while macroscopic black holes would not.

The question we are interested in is what happens
(generically) to a large macroscopic black hole if it is
not fed by incoming mass. Then two processes are in
place: its Hawking evaporation for a time ⇠ m

3
/~ (pro-

cess 3) and the internal growth of v (process 1). This
continues until process (4) becomes relevant, which hap-
pens when the mass is reduced to order of Planck mass.
At this point the black hole has a probability of order
one to tunnel into a white hole under process (4). But a
white hole in unstable under process (2), giving it a finite
probability of returning back to a black hole. Both pro-
cesses (4) and (2) are fast at this point. Notice that this
happens at large v, therefore in a configuration that clas-
sically is very distant from flat space, even if the overall
mass involved is small.

As energy is constantly radiated away and no energy
is fed into the system, the system evolves towards low
m. But m cannot vanish, because of the presence of the
interior: in the classical theory, a geometry with larger v
and small m is not contiguous to a Minkowski geometry,
even if the mass is small. Therefore in the large v region
we have m > 0. Alternatively, this can be seen as a
hypothesis ruling out macroscopic topology change.

But m cannot be arbitrarily small either, because of
quantum gravity. The quantity m is defined locally by
the area of the horizon A = 16⇡G2

m
2 and A is quan-

tized. According to Loop Quantum Gravity [40] the
eigenvalues of the area of any surface are [41]

A = 8⇡ ~G
p
j(j + 1) (23)

where we have taken the Immirzi parameter to be unit
for simplicity. The minimal non-vanishing eigenvalue is

ao = 4
p

3⇡ ~G (24)

and is called the ‘area gap’ in loop quantum cosmology
[42]. This gives a minimal non-vanishing mass µ defined
by ao = 16⇡G2

µ
2, that is

µ ⌘
3

1
4

2

r
~
G
. (25)

(we have momentarily restored G 6= 1 for clarity.) Radi-
ating energy away brings down the system to the m = µ

eigenspace. Consider now states that are eigenstates of
m with the minimal value m = µ and denote them
|B,µ, vi and |W,µ, vi. The dynamics governed by the
above Hamiltonian allows transition between black and
white components. This is a typical quantum mechanical
situation where two states, here |B,µ, vi and |W,µ, vi,
can dynamically turn into one another. Let us we disre-
gard for a moment v, which is invisible from the exterior,
and project H̃ down to a smaller state space H with ba-
sis states |H,µi. This is a two dimensional Hilbert space
with basis vectors |B,µi and |W,µi. Seen from the exte-
rior, the state of ⌃ will converge to Hµ.
The Hamiltonian acting on this subspace is

H =

 
µ

b~
µ

a~
µ

µ

!
(26)

where a = ce
�

p
3

4 . Quantum mechanics indicates that in
a situation where the system can radiate energy away and
there are possible transitions between these two states,
the actual state will converge to a quantum state which
is a quantum superposition of the two given by the lowest
eigenstate of H. This is

|Ri =

p
a

b
|B,µi � |W,µi
p

1 + a

b

(27)

(R for ‘Remnant’) and has eigenvalue µ � ~
p
ab/µ. If

the amplitude b of going from black to white is larger
than the amplitude a of going from white to black (as
it seems plausible), the state is dominated by the white
hole component. A related picture was been considered
in [43–45]: a classical oscillation between black and white
hole states.
In a fully stationary situation, the mass m is equal

to the Bondi mass, which generates time translations at
large distance from the hole in the frame determined by
the hole. (Quantum gravity is locally Lorentz invariant
[46, 47] and has no preferred time [48] but a black hole
in a large nearly-flat region determines a preferred frame
and a preferred time variable.) Keeping possible tran-
sitions into account there is a subtle di↵erence between
the mass m, determined locally by the horizon area, and
the energy of the system, which is determined by the full

oscillation between  
black and white  

hole states  

From the outside, at a finite time, 
 no distinction between black and white holes

PROCESSES 
1. BH volume increase & WH volume decrease 
2. White to black instability 
3. Hawking evaporation 
4. Black to white tunnelling  

STABILITY 
The minimal area yields a minimal mass!
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mal extension of the Schwarzschild solution is equally the
outside of a black hole and the outside of a white hole
(see Fig. 1, Top). Analogous considerations hold for the
Kerr solution. In other words, the continuation inside
the radius r = 2m + ✏ of an external stationary black
hole metric contains both a trapped region (a black hole)
ad an anti-trapped region (a white hole).

What distinguishes then a black hole from a white
hole? The objects in the sky we call ‘black holes’ are de-
scribed by a stationary metric only approximately, and
for a limited time. In their past (at least) their met-
ric was definitely non-stationary, as they were produced
by gravitational collapse. In this case, the continuation
of the metric inside the radius r = 2m + ✏ contains a
trapped region, but not an anti-trapped region (see Fig.
1, Center). Viceversa, a white hole is an object that is
undistinguishable from a black hole from the exterior and
for a finite time, but in the future ceases to be stationary
and there is no trapped region in its future (see Fig. 1,
Bottom).

III. QUANTUM PROCESSES AND TIME
SCALES

The classical prediction that the black is forever stable
is not reliable. In the uppermost band of the central
diagram of Fig. 1 quantum theory dominates. The death
of a black hole is therefore a quantum phenomenon. The
same is true for a white hole, reversing time direction.
That is, the birth of a white hole is in a region where
quantum gravitational phenomena are strong.

This consideration eliminates a traditional objection
to the physical existence of white holes: How would they
originate? They originate from a region where quantum
phenomena dominate the behaviour of the gravitational
field.

Such regions are generated in particular by the end
of the life of a black hole, as mentioned above. Hence
a white hole can in principle be originated by a dying
black hole. This scenario has been shown to be concretely
compatible with the exact external Einstein dynamics
in [12] and has been explored in [13–18]. The causal
diagram of the spacetime giving the full life cycle of the
black-white hole is given below in Fig. 2.

In particular, the result of [16] indicates that the black-
to-white process is asymmetric in time [13] and the time
scales of the durations of the di↵erent phases are deter-
mined by the initial mass of the black hole mo. The
lifetime ⌧BH of the black hole is known from Hawking
radiation theory to be at most of the order

⌧BH ⇠ m
3
o

(1)

in Planck units ~ = G = c = 1. This time can be as
shorter as ⌧BH ⇠ m

2
o
because of quantum gravitational

e↵ects [11–15] (see also [20–24]) but we disregard this
possibility here. The lifetime ⌧WH of the white hole phase

WH II
BH

FIG. 2: The full life of a black-white hole.

is longer [16]:

⌧BH ⇠ m
4
o
. (2)

The tunnelling process itself from black to white takes a
time of the order of the current mass at transition time
[15]. The area of the horizon of the black hole decreases
with time because of Hawking evaporation, decreasing
from mo to the Planck mass mPl. At this point the
transition happens and a white hole of mass of the order
of the Planck mass is formed.

IV. TIMESCALES

Consider the hypothesis that white-hole remnants are
a constituent of dark matter. To give an idea of the
density of these objects, a local dark matter density of
the order of 0.01M�/pc

3 corresponds to approximately
one Planck-scale remnant, with the weight of half a inch
of human hair, per each 10.000Km

3. For these objects to
be still present now we need that their lifetime be larger
or equal than the Hubble time TH , that is

m
4
o
� TH . (3)

On the other hand, since the possibility of many larger
back holes is constrained by observation, we expect rem-
nants to be produced by already evaporated black holes,
therefore the lifetime of the black hole must be shorter
than the Hubble time. Therefore

m
3
o
< TH . (4)

This gives an estimate on the possible value of m0:

1010gr  m
3
o
< 1015gr. (5)

These are the masses of primordial black holes that could
have given origin to dark matter present today in the
form of remnants. Their Schwarzschild radius is in the
range

10�18
cm  Ro < 10�13

cm. (6)

Mo
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The tunnelling process itself from black to white takes a
time of the order of the current mass at transition time
[15]. The area of the horizon of the black hole decreases
with time because of Hawking evaporation, decreasing
from mo to the Planck mass mPl. At this point the
transition happens and a white hole of mass of the order
of the Planck mass is formed.

IV. TIMESCALES

Consider the hypothesis that white-hole remnants are
a constituent of dark matter. To give an idea of the
density of these objects, a local dark matter density of
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3 corresponds to approximately
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nants to be produced by already evaporated black holes,
therefore the lifetime of the black hole must be shorter
than the Hubble time. Therefore
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This gives an estimate on the possible value of m0:
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These are the masses of primordial black holes that could
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PBHs form at the reheating, evaporates and evolve in a long-living remnant 
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of the matter density ⇢M , and this in turn is related to
TH by the Friedmann equation

1

T 2
H

⇠
✓
ȧ

a

◆2

⇠ ⇢M , (5)

where we neglect factors of order unit. Therefore the
current density ⇢ of remnants is of the order

⇢ ⇠ ⇢M ⇠ 1

T 2
H

. (6)

If we take the mass of each remnant to be Planckian
[15], namely of order unit in Planck units, ⇢ is also their
number density in the units we are using. From the big
bounce to the current epoch the universe has widely ex-
panded. Assuming at least 60 e-folding, the bounce is
not very far from the epoch where the horizon is Planck-
ian, which gives a linear expansion factor of the order of
TH and therefore a volume expansion factor of the order
of T 3

H
. To have the su�cient density of remnants today

to saturate dark matter, we need a density of the order

⇢b ⇠ ⇢T 3
H

⇠ TH (7)

at the bounce. Using (4) we have an amount of internal
volume per unit of external volume

Vint = ⇢bVWH > T 2
H
. (8)

This means that only a fraction

1/T 2
H

⇠ 10�120 (9)

of the volume of the universe was outside the remnants at
the bounce. If we assume equiprobability for each equal
volume of the universe, the probability for an observer to
be outside those remnants at the bounce is one part in
10120. Therefore an observer outside the remnants is in
this sense ‘special’ as one part in 10120.

III. PAST LOW ENTROPY

The mystery of the second principle of thermodynam-
ics is not why entropy growth towards the future. That’s
pretty obvious. The mystery is why entropy diminishes
going towards the past [30–35]. All current irreversible
phenomena, including our own future-oriented thinking,
the existence of memories and the direction of causal-
ity we use to make sense of the world, can be traced to
the fact that entropy was low in the past [36, 37]. Since
matter was apparently near thermal equilibrium in the
past, the low entropy was concentrated on the geometry.
In fact, in standard cosmology geometry is assumed to
be nearly homogenous. For the gravitational field, ho-
mogeneity is a very low entropy configuration, because
gravity tends to clump and generically the evolution of
perturbations leads increasingly away from homogene-
ity. In fact, as long argued by Penrose, generic states

of gravity, to which generic evolution tends, are highly
crumpled, not homogeneous. (For interesting criticisms
and informed alternative perspectives, see [38–41].)
The fact that source of past low entropy, hence the

source of irreversibility, was the homogeneity of space
is confirmed by a simple analysis of the thermodynam-
ical history of the universe. For instance irreversibility
on Earth is due to the strong source of negative en-
ergy formed by the sun; the sun in turn was irreversibly
formed by the collapse of a primordial cloud under grav-
itational attraction. Therefore the original negative en-
tropy driving irreversibility around us can be traced to
the early lack of gravitational clumping. As repeatedly
pointed out by Penrose, the fact that the geometry of
the universe was small and homogenous to the degree re-
quired by the current standard cosmological model, im-
plies a very ‘special’ state determining an initial low en-
tropy.
But if the remnant scenario is correct, the geometry at

the bounce had far more volume and was not homogenous
at all. To the opposite, it was very highly crumpled. If
so, what is the origin of past low entropy, if it is not how
special the initial geometry was?

IV. PERSPECTIVAL ENTROPY

An imposing aspects of the Cosmos is the mighty daily
rotation of Sun, Moon, planets, stars and all galaxies
around us. Why does the Cosmos rotate so? Well, it is
not the Cosmos rotating, it is us. The rotation of the sky
is a perspectival phenomenon: we understand it better as
due to the peculiarity of our own moving point of view,
rather than as a global feature of all celestial objects.
The list of conspicuous phenomena that have turned out
to be perspectival is long; recognising them has been a
persistent aspect of the progress of science.
The hypothesis put forward in [26] is that the increase

of entropy is a perspectival phenomenon in this sense. To
be sure, it is not subjective or mental, or illusory. Rather,
its source is in the relation between an observer system
and an observed system, like for the rotation of the sky.
This is possible because the entropy of a system de-

pends on the system’s microstate but also on the coarse
graining under which the system interacts. The relevant
coarse graining is determined by the concrete existing
interactions with the system. The entropy we assign to
systems around us depends on the way we interact with
them – as the apparent motion of the sky depends on our
own motion.
This observation opens a novel way for facing the puz-

zle of the arrow of time: the universe is in a generic
state, but su�ciently rich to include subsystems whose
coupling defines a coarse graining for which entropy in-
creases monotonically. These subsystems are those where
information can pile up and ‘information gathering crea-
tures’ such as those composing the biosphere can exist.
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around us. Why does the Cosmos rotate so? Well, it is
not the Cosmos rotating, it is us. The rotation of the sky
is a perspectival phenomenon: we understand it better as
due to the peculiarity of our own moving point of view,
rather than as a global feature of all celestial objects.
The list of conspicuous phenomena that have turned out
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its source is in the relation between an observer system
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graining under which the system interacts. The relevant
coarse graining is determined by the concrete existing
interactions with the system. The entropy we assign to
systems around us depends on the way we interact with
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zle of the arrow of time: the universe is in a generic
state, but su�ciently rich to include subsystems whose
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BOUNCING BLACK HOLES IN A BOUNCING UNIVERSE 
Planckian PBH remands from a previous eon (Penrose’s EREBONS) 
Planck size particles can pass trough the bounce.  

PAST LOW ENTROPY  
Matter near thermal equilibrium: geometry has low entropy  
A volume of  the universe outside BH as low as only                            of  the total  
could have been outside the remnants at the bounce! 

DARK MATTER  
We want Mo4 ≥ tHubble for them to survive till today. 

Inflation dilutes PBH: 

MATTER BOUNCE: PBH as pressureless component 
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QUANTUM BOUNCE

Quantum Tunneling 

Effective repulsive force 

Size     Planck length  

Phenomenology

superposition 

Planck density 

… 

signature in the CMB

Vb ⇠
m

mP

`3P ⇡ 1024cm3

�

pre-big-bang accessible

see Ashtekar,Barrau for a review 1504.07559 

expanding 
solution

contracting 
solution
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Vidotto, Rovelli 1401.6562  

 
“Planck Star”



Francesca VidottoQuantum Black Holes

Scenario 3 
FAST EXPLOSION
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 QUANTUM EFFECTS SHORTEN BH LIFETIME

Vidotto, Rovelli 1401.6562  

Dvali, Gomez  1112.3359

m

r3
Tb ⇠ 1

1

m2
Tb ⇠ 1

 
Gubser 2002, Kol 2002

Emparan, Garcıa-Bellido, Kaloper 2003 

Black Hole Lifetime  
Quantum Gravity effects should manifest before the Page time (firewalls!)  
⟹ the hole lifetime must be shorter or of  the order of  ~ m3 

Black-to-White Tunnelling  
Minimal time for quantum effects to appear on the horizon:       Curvature × (time) ~ (LP)-1  
   ⟹ the hole lifetime must be longer or of  the order of  ~ m2  

See also Quantum Break Time  

Other BH instabilities? From large extra dimensions? From infinite branes?  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Today, black holes smaller than                      have already exploded. 

It decreases with time.  ( but for later accretion/merging )  

Caution with constraints! 

Effects on late cosmology

m(t)|t=tH
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(QUANTUM) PBH DARK MATTER

Constraints from 
Hawking evaporation 
do not apply any more. 

Galaxy clusters surveys

Raccanelli, Vidotto, Verde 1708.02588
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EFFECT ON GALAXY CLUSTERS
Raccanelli, Vidotto, Verde 1708.02588
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angular positions and redshifts 
perturbed by peculiar velocities, 
gravitational lensing and potentials  
 
 

Choice of  redshift distribution:

3

where � refers to the overdensity in the comoving gauge,
rsd and v denote Doppler effects and peculiar velocity
[49],  the lensing convergence and pot incorporates lo-
cal and non local terms depending on Bardeen potentials
and their temporal derivatives; t includes tensor pertur-
bation effects. For simplicity, we omitted the redshift and
direction dependencies (n, z).

Galaxy clustering measurements have been used to
measure cosmological parameters for a variety of cosmo-
logical models (see e.g. [50–56]), and it is the focus of
many future large scale galaxy surveys (see e.g. [57–61]).
Therefore it is interesting to see that it can also be used
to test different QG models and potentially extend con-
straints on PBHs as DM.

The most relevant statistical quantity usually mea-
sured is the 2-point function; its spherical harmonic coun-
terpart, the angular power spectrum, that correlates two
probes X and Y is:

C
XY
` (zi, zj) =

D
a
X
`m(zi) a

Y ⇤

`m(zj)
E

, (3)

where the star denotes complex conjugation, and the
spherical harmonics coefficients are defined by X =P

a`mY`m(n), with Y`m denoting the spherical harmon-
ics functions, n the direction on the sky and zi is the red-
shift. This can be calculated from the underlying matter
power spectrum by using:

C
XY
` (zi, zj) =

Z
4⇡dk

k
�2(k) WX

` (k, zi) W
Y
` (k, zj) , (4)

where W
{X,Y }
` are the source distribution kernels for the

different observables (i.e. galaxies in different redshift
bins) and �2(k) is the dimensionless matter power spec-
trum today.

The kernel for the galaxy clustering can be written as
(see e.g. [62]):

W
X
` (k) =

Z
dNX(z)

dz
D(z) bX(z) j`[k�(z)] dz , (5)

where dNX(z)/dz is the objects redshift distribution,
D(z) the growth rate of structures, bX(z) is the bias
that relates the observed overdensity to the underlying
matter distribution (see [63] for a recent review); j`(x)
is the spherical Bessel function of order `, and �(z) is
the comoving distance.

B. Cosmic Magnification

Gravitational lensing causes the deflection of light rays
by the matter distribution along the line of sight, causing
two competing effects: on one hand, a size magnification
of sources behind a lens, on the other hand lensing causes
the stretching of the observed field of view. Therefore,
for magnitude (or flux) limited galaxy surveys, sources
that are just below the threshold for detection will be

magnified and become detectable, so that the observed
number density of sources increases. At the same time,
the stretching of the field of view leads to a decrease of
the observed number density. The combined effect can
be written as:

n
obs(z) = ng(z)[1 + (5s� 2)] , (6)

where n
obs and ng are the observed and intrinsic number

of sources, respectively, s is the magnification bias and 

is the convergence. The net modification of the observed
number density is called magnification bias s:

s =
d logN|<M

dM

����
Mlim

, (7)

where Mlim is the magnitude (or flux) limit of the survey
and N|<M

is the number count for galaxies brighter than
a magnitude (or flux) M .

Cosmic magnification has been suggested as a probe
for cosmology [64] and has been subsequently studied in
a variety of works (see e.g. [65, 66]); as part of the contri-
butions to the observed large-scale galaxy correlation, it
has been analyzed in e.g. [48, 67, 68]. From Equation (4),
it is clear that cosmic magnification could be detected by
cross-correlating galaxies in two disjoint redshift bins (see
e.g. [69, 70]).

C. Galaxy surveys

We model our galaxy survey after the Square Kilo-
metre Array (SKA)2, which is an international multi-
purpose next-generation radio interferometer, that will
be built in the Southern Hemisphere in Africa and in
Australia, with a total collecting area of about 1 km2.
Among many types of observations delivered by such in-
struments, we focus here on surveys that will detect in-
dividual galaxies in the radio continuum [71]; we assume
that the survey will cover 30, 000 deg2, and we compute
results for a flux limit of 1µJy. Although radio contin-
uum surveys do not have in principle redshift informa-
tion, some techniques have been proposed to allow the
possibility to divide the galaxy catalog into tomographic
redshift bins; here we follow the clustering-based redshift
(CBR) information approach proposed in [72], and stud-
ied for some cosmological applications (including some
predictions for the SKA), in [73]. In Figure 1 we show
the (normalized) redshift distribution for the SKA radio
continuum survey we use for this paper.

We compute the observational consequences of BH de-
cay by using a modified version of the class3 code, and
we investigate the effects on galaxy angular power spec-
tra. Given the specifications of the proposed future sur-
veys, we forecast the measurements’ precision using the

2 https://skatelescope.org
3 http://class-code.net/
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Characterisation 
of the signal



 LOW ENERGY: size of  the source  ≈  wavelength                                   (?) 

 HIGH ENERGY: energy of  the particle liberated 

 SYNCHROTRON EMISSION 

 GRAVITATIONAL WAVES 

 exploding today: R =
2Gm

c2
⇠ .02 cmm =

r
tH
4k

⇠ 1.2⇥ 1023 kg

E = mc2 ⇠ 1.7⇥ 1047 erg

Barrau,  Rovelli, Vidotto 1409.4031  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�predicted & .05 cm

⇡ Tev

R =
2Gm

c2
⇠ .02 cm

Kavic &al. 0801.4023

 fast process  ( few milliseconds? ) 

 the source disappears with the burst 

 very compact object: big flux 

 PBH EXPLOSIONS



fast process  ( few milliseconds ) 

compact object: big flux 

HIGH ENERGY              ➞  REES’ MECHANISM 

Electron-positron pairs traveling trough a magnetic field  

 Repetition can be due to: • reflection of  the signal due to plasm walls  
                                         • region dense of  PBH

 LOW ENERGY: size of  the source  ≈  wavelength                                 

 We may have missed a factor in our rough calculation! 

We may be seeing only the a window in a distribution of  event 

E = mc2 ⇠ 1.7⇥ 1047 erg

Francesca VidottoQuantum Gravity Phenomenology

�predicted & .05 cmR =
2Gm

c2
⇠ .02 cm

Kavic &al. 0801.4023

FAST RADIO BURSTS

⇡ Tev

Barrau &al. 1801.03841
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Hadron decay

Direct emission

Galactic scale

k
E [eV]

1 104

3.6×1013
108

3.6×1014
1012

3.6×1015
1016

3.6×1016
1020

3.6×1017

1016

1018

1020

1022

1024

R
[m

]

detection of  arbitrarily far signals 

better single-event detection 

Barrau, Bolliet, Vidotto, Weimer 1507.1198

Hubble radius

Galactic scale

k
E [eV]

1 104

2.7
108

2.7×102
1012

2.7×104
1016

2.7×106
1020

2.7×108

1028

1026

1020

1022

1024

R
[m

]

Low energy channel High energy channel

PBH: mass - temperature relation 

different scaling 

shorter lifetime  —  smaller wavelength

MAXIMAL DISTANCE



Francesca VidottoQuantum Gravity Phenomenology

THE SMOKING GUN: DISTANCE/ENERGY RELATION

 distant signals originated in younger, smaller&hotter sources
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THE SMOKING GUN: DISTANCE/ENERGY RELATION

 distant signals originated in younger, smaller&hotter sources
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FIG. 1: White hole signal wavelength (unspecified units) as
a function of z. Notice the characteristic flattening at large
distance: the youth of the hole compensate for the redshift.

The received signal is going to be corrected by standard
cosmological redshift. However, signals coming form far-
ther away were originated earlier, namely by younger,
and therefore less massive, holes, giving a peculiar de-
crease of the emitted wavelength with distance. The re-
ceived wavelength, taking into account both the expan-
sion of the universe and the change of time available for
the black hole to bounce, can be obtained folding (1) into
the standard cosmological relation between redshift and
proper time. A straightforward calculation gives

�obs ⇠ 2Gm

c2
(1 + z) ⇥ (6)

vuut H
�1
0

6 k⌦ 1/2
⇤

sinh�1

"✓
⌦⇤

⌦M

◆1/2

(z + 1)�3/2

#
.

where we have reinserted the Newton constant G and
the speed of light c while H0,⌦⇤ and ⌦M are the Hub-
ble constant, the cosmological constant, and the matter
density. This is a very slowly varying function of the
redshift. The e↵ect of the hole’s age almost compesates
for the red-shift. The signal, indeed, varies by less than
an order of magnitude for redshifts up to the decoupling
time (z=1100). See Figure 1.

If the redshift of the source can be estimated by using
dispersion measures or by identifying a host galaxy, given
su�cient statistics this flattening represents a decisive
signature of the phenomenon we are describing.

Do we have experiments searching for these signals?
There are detectors operating at such wavelengths, begin-
ning by the recently launched Herschel instrument. The
200 micron range can be observed both by PACS (two
bolometer arrays and two Ge:Ga photoconductor arrays)
and SPIRE (a camera associated with a low to medium
resolution spectrometer). The predicted signal falls in be-
tween PACS and SPIRE sensitivity zones. There is also a
very high resolution heterodyne spectrometer, HIFI, on-
board Herschel, but this is not an imaging instrument, it
observes a single pixel on the sky at a time. However, the
bolometer technology makes detecting short white-hole
bursts di�cult. Cosmic rays cross the detectors very of-
ten and induce glitches that are removed from the data.
Were physical IR bursts due to bouncing black hole regis-
tered by the instrument, they would most probably have
been flagged and deleted, mimicking a mere cosmic ray

noise. There might be room for improvement. It is not
impossible that the time structure of the bounce could
lead to a characteristic time-scale of the event larger than
the response time of the bolometer. In that case, a
specific analysis should allow for a dedicated search of
such events. We leave this study for a future work as
it requires astrophysical considerations beyond this first
investigation. An isotropic angular distribution of the
bursts, signifying their cosmological origin, could also be
considered as an evidence for the model. In case many
events were measured, it would be important to ensure
that there is no correlation with the mean cosmic-ray flux
(varying with the solar activity) at the satellite location.
Let us turn to something that has been observed.
Fast Radio Bursts. Fast Radio Bursts are intense iso-

lated astrophysical radio signals with milliseconds dura-
tion. A small number of these were initially detected
only at the Parkes radio telescope [39–41]. Observations
from the Arecibo Observatory have confirmed the detec-
tion [42]. The frequency of these signals around 1.3 GHz,
namely a wavelength

�observed ⇠ 20 cm. (7)

These signals are believed to be of extragalactic origin,
because the observed delay of the signal arrival time with
frequency agrees well with the dispersion due to ionized
medium as expected from a distant source. The total
energy emitted in the radio is estimated to be of the
order 1038 erg. The progenitors and physical nature of
the Fast Radio Bursts are currently unknown [42].
There are three orders of magnitude between the pre-

dicted signal (5) and the observed signal (7). But the
black-to-white hole transition model is still very rough. It
disregards rotation, dissipative phenomena, anisotropies,
and other phenomena, and these could account for the
discrepancy.
In particular, astrophysical black holes rotate: one may

expect the centrifugal force to lower the attraction and
bring the lifetime of the hole down. This should allow
larger black holes to explode today, and signals of larger
wavelength. Also, we have not taken the astrophysics of
the explosion into account. The total energy (3) avail-
able in the black hole is largely su�cient –9 orders of
magnitude larger– than the total energy emitted in the
radio estimated by the astronomers.
Given these uncertainties, the hypothesis that Fast Ra-

dio Burst could originate from exploding white holes is
tempting and deserves to be explored.
High energy signal. When a black hole radiates by

the Hawking mechanism, its Schwarzschild radius is the
only scale in the problem and the emitted radiation has
a typical wavelength of this size. In the model we are
considering, the emitted particles do not come from the
coupling of the event horizon with the vacuum quan-
tum fluctuations, but rather from the time-reversal of
the phenomenon that formed (and filled) the black hole.
Therefore the emitted signal is characterized by second

 distance ∝ 1/wave length 
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FIG. 3. Best fit to the Fermi excess with bouncing black
holes.

DISCRIMINATION WITH DARK MATTER AND
MASS SPECTRUM

The model presented in this work is unquestionably
quite exotic when compared to astrophysical hypotheses.
But the important point is than it can, in principle, be
distinguished both from astrophysical explanations and
from other “beyond the standard model” scenarios. The
reason for that is the redshift dependance. When look-
ing at a galaxy at redshift z, the measured energy of
the signal emitted either by decaying WIMPS or by as-
trophysical objects will be E/(1 + z) if the rest-frame
energy is E. But this is not true for the bouncing black
holes signal. The reason for this is that black holes that
have bounced far away and are observed now must have
a smaller bouncing time and therefore a smaller mass.
Their emission energy – in the low energy channel we are
considering in this article – is therefore higher and this
partly compensates for the redshift e↵ect. Following [9],
we can write down the observed wavelength of the signal
from a host galaxy at redshift z, taking into account both
the expansion of the universe and the change of bouncing
time, as:
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where we have reinserted the Newton constant G and
the speed of light c; H0,⌦⇤ and ⌦M being the Hubble
constant, the cosmological constant, and the matter den-
sity. On the other hand, for other signals the measured
wavelength this just related to the observed wavelength

by

�
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= (1 + z)�other
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. (6)

The specific redshift dependence of our model makes
it possibly testable against other proposals. Obvi-
ously, detecting such a signal from far away galaxies
is challenging but this work might precisely motivate
some experimental prospects for the next generation of
gamma-ray satellites.

The order of magnitude of the number of bouncing
black holes in the galactic center region required to ac-
count for the observed flux is 100 per second. The asso-
ciated mass is negligible when compared to the expected
dark matter density, even when integrated over a long
time interval. If the mass spectrum of primordial black
holes was known, which is not the case, it would in prin-
ciple be possible to fix the total mass associated with
bouncing black holes. As a reasonable toy model, let us
assume that the mass spectrum is given by

d
2
N

dMdV
= pM

�↵
. (7)

If the number of exploding black holes required to explain
the data on a time interval d⌧ is Nexp, one can estimate
the mass variation associated,

dM =
d⌧

8kM
. (8)

With M0 the mass corresponding to a black hole explod-
ing now, one then has

Nexp =

Z
M0+dM

M0

pM
�↵

dM. (9)

This allows, in principe, to determine p and therefore to
normalize the spectrum.

CONCLUSION

Black holes could bounce once they have reached the
“Planck star” stage. This is a well motivated quantum
gravity idea. In this article, we have shown that this
phenomenon could explain the GeV excess measured by
the Fermi satellite. This would open the fascinating pos-
sibility to observe (non perturbative) quantum gravity
processes at energies 19 orders of magnitude below the
Planck scale. Interestingly the explanation we suggest is
fully self consistant in the sense that the hadronic “noise”
due to decaying pions remains much below the observed
background. Unquestionably, there are other – less exotic
– ways to explain the Fermi excess. But the important
point we have made is that there is specific redshift de-
pendance of this model which, in principle, can lead to a
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This shows that although the mean wavelength does
decreases as a function of k in both cases, it does not
follow the same general behavior. It scales with k

� 1
2

for the low energy component and as k
� 1

4 for the high
energy one.

The following conclusions can be drawn:

• The low energy channel leads to a better single-
event detection than the high energy channel.
Although lower energy dilutes the signal in a
higher astrophysical background, this e↵ect is over-
compensated by the larger amount of photons.

• The di↵erence of maximal distances between the
low- and high energy channels decreases for higher
values of k, i.e. for longer black-hole lifetimes.

• In the low energy channel, for the smaller values
of k, a single bounce can be detected arbitrary far
away in the Universe.

• In all cases, the distances are large enough and ex-
perimental detection is far from being hopeless.

III. INTEGRATED EMISSION

In addition to the instantaneous spectrum emitted by a
single bouncing black hole, it is interesting to consider the
possible di↵use background due to the integrated emis-
sion of a population of bouncing black holes. Formally,
the number of measured photons detected per unit time,
unit energy and unit surface, can be written as:
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Z
�ind((1+z)E,R)·n(R)·Acc·Abs(E,R)dR,

(7)
where �ind(E,R) denotes the individual flux emitted
by a single bouncing black hole at distance R and at
energy E, Acc is the angular acceptance of the detector
multiplied by its e�ciency (in principle this is also a
function of E but this will be ignored here), Abs(E,R)
is the absorption function, and n(R) is the number of
black holes bouncing at distance R per unit time and
volume. The distance R and the redshift z entering
the above formula are linked. The integration has to
be carried out up to cosmological distances and it is
therefore necessary to use exact results behind the linear
approximation. The energy is also correlated with R

as the distance fixes the bounce time of the black hole
which, subsequently, fixes the emitted energy.

It is worth considering the n(R) term a bit more in
detail. If one denotes by dn

dMdV
the initial di↵erential

mass spectrum of primordial black holes per unit volume,
it is possible to define n(R) as:

n(R) =

Z
M(t+�t)

M(t)

dn

dMdV
dM, (8)

leading to

n(R) ⇡ dn

dMdV

�t

8k
, (9)

where the mass spectrum is evaluated for the mass cor-
responding to a time (tH � R

c
). If one assumes that pri-

mordial black holes are directly formed by the collapse
of density fluctuations with a high-enough density con-
trast in the early Universe, the initial mass spectrum is
directly related to the equation of state of the Universe
at the formation epoch. It is given by [18, 19]:

dn

dMdV
= ↵M

�1� 1+3w
1+w , (10)

where w = p/⇢. In a matter-dominated universe the
exponent � ⌘ �1 � 1+3w

1+w
takes the value � = �5/2.

The normalization coe�cient ↵ will be kept unknown
as it depends on the details of the black hole formation
mechanism. For a sizeable amount of primordial black
holes to form, the power spectrum normalized on the
CMB needs to be boosted at small scales. This can
be achieved, for example, through Staobinsky’s broken
scale invariance (BSI) scenario. The idea is that the
mass spectrum takes a high enough value in the relevant
range whereas it is naturally suppressed at small masses
by inflation and at large masses by the BSI hypothesis.
We will not study those questions here and just consider
the shape of the resulting emission, nor its normalisation
which depends sensitively on the bounds of the mass
spectrum, that are highly model-dependent. As this part
of the study is devoted to the investigation of the shape
of the signal, the y axis on the figures are not normalized.

Fortunately, the results are weakly dependent upon
the shape of the mass spectrum. This is illustrated in
Fig. 5 where di↵erent hypothesis for the exponent � are
displayed. The resulting electromagnetic spectrum is
almost exactly the same. Therefore we only keep one
case (� = �5/2, corresponding to w = 1/3). The black
holes are assumed to be uniformly distributed in the
Universe, which is a meaningful hypothesis as long as
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for the low energy component and as k
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energy one.

The following conclusions can be drawn:

• The low energy channel leads to a better single-
event detection than the high energy channel.
Although lower energy dilutes the signal in a
higher astrophysical background, this e↵ect is over-
compensated by the larger amount of photons.

• The di↵erence of maximal distances between the
low- and high energy channels decreases for higher
values of k, i.e. for longer black-hole lifetimes.

• In the low energy channel, for the smaller values
of k, a single bounce can be detected arbitrary far
away in the Universe.

• In all cases, the distances are large enough and ex-
perimental detection is far from being hopeless.

III. INTEGRATED EMISSION

In addition to the instantaneous spectrum emitted by a
single bouncing black hole, it is interesting to consider the
possible di↵use background due to the integrated emis-
sion of a population of bouncing black holes. Formally,
the number of measured photons detected per unit time,
unit energy and unit surface, can be written as:
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where �ind(E,R) denotes the individual flux emitted
by a single bouncing black hole at distance R and at
energy E, Acc is the angular acceptance of the detector
multiplied by its e�ciency (in principle this is also a
function of E but this will be ignored here), Abs(E,R)
is the absorption function, and n(R) is the number of
black holes bouncing at distance R per unit time and
volume. The distance R and the redshift z entering
the above formula are linked. The integration has to
be carried out up to cosmological distances and it is
therefore necessary to use exact results behind the linear
approximation. The energy is also correlated with R

as the distance fixes the bounce time of the black hole
which, subsequently, fixes the emitted energy.

It is worth considering the n(R) term a bit more in
detail. If one denotes by dn
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the initial di↵erential
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it is possible to define n(R) as:
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where the mass spectrum is evaluated for the mass cor-
responding to a time (tH � R
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). If one assumes that pri-

mordial black holes are directly formed by the collapse
of density fluctuations with a high-enough density con-
trast in the early Universe, the initial mass spectrum is
directly related to the equation of state of the Universe
at the formation epoch. It is given by [18, 19]:
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where w = p/⇢. In a matter-dominated universe the
exponent � ⌘ �1 � 1+3w
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takes the value � = �5/2.

The normalization coe�cient ↵ will be kept unknown
as it depends on the details of the black hole formation
mechanism. For a sizeable amount of primordial black
holes to form, the power spectrum normalized on the
CMB needs to be boosted at small scales. This can
be achieved, for example, through Staobinsky’s broken
scale invariance (BSI) scenario. The idea is that the
mass spectrum takes a high enough value in the relevant
range whereas it is naturally suppressed at small masses
by inflation and at large masses by the BSI hypothesis.
We will not study those questions here and just consider
the shape of the resulting emission, nor its normalisation
which depends sensitively on the bounds of the mass
spectrum, that are highly model-dependent. As this part
of the study is devoted to the investigation of the shape
of the signal, the y axis on the figures are not normalized.

Fortunately, the results are weakly dependent upon
the shape of the mass spectrum. This is illustrated in
Fig. 5 where di↵erent hypothesis for the exponent � are
displayed. The resulting electromagnetic spectrum is
almost exactly the same. Therefore we only keep one
case (� = �5/2, corresponding to w = 1/3). The black
holes are assumed to be uniformly distributed in the
Universe, which is a meaningful hypothesis as long as
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decreases as a function of k in both cases, it does not
follow the same general behavior. It scales with k
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for the low energy component and as k
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4 for the high
energy one.

The following conclusions can be drawn:

• The low energy channel leads to a better single-
event detection than the high energy channel.
Although lower energy dilutes the signal in a
higher astrophysical background, this e↵ect is over-
compensated by the larger amount of photons.

• The di↵erence of maximal distances between the
low- and high energy channels decreases for higher
values of k, i.e. for longer black-hole lifetimes.

• In the low energy channel, for the smaller values
of k, a single bounce can be detected arbitrary far
away in the Universe.

• In all cases, the distances are large enough and ex-
perimental detection is far from being hopeless.

III. INTEGRATED EMISSION

In addition to the instantaneous spectrum emitted by a
single bouncing black hole, it is interesting to consider the
possible di↵use background due to the integrated emis-
sion of a population of bouncing black holes. Formally,
the number of measured photons detected per unit time,
unit energy and unit surface, can be written as:
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where �ind(E,R) denotes the individual flux emitted
by a single bouncing black hole at distance R and at
energy E, Acc is the angular acceptance of the detector
multiplied by its e�ciency (in principle this is also a
function of E but this will be ignored here), Abs(E,R)
is the absorption function, and n(R) is the number of
black holes bouncing at distance R per unit time and
volume. The distance R and the redshift z entering
the above formula are linked. The integration has to
be carried out up to cosmological distances and it is
therefore necessary to use exact results behind the linear
approximation. The energy is also correlated with R

as the distance fixes the bounce time of the black hole
which, subsequently, fixes the emitted energy.

It is worth considering the n(R) term a bit more in
detail. If one denotes by dn
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the initial di↵erential
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it is possible to define n(R) as:
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where the mass spectrum is evaluated for the mass cor-
responding to a time (tH � R
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). If one assumes that pri-

mordial black holes are directly formed by the collapse
of density fluctuations with a high-enough density con-
trast in the early Universe, the initial mass spectrum is
directly related to the equation of state of the Universe
at the formation epoch. It is given by [18, 19]:
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where w = p/⇢. In a matter-dominated universe the
exponent � ⌘ �1 � 1+3w
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takes the value � = �5/2.

The normalization coe�cient ↵ will be kept unknown
as it depends on the details of the black hole formation
mechanism. For a sizeable amount of primordial black
holes to form, the power spectrum normalized on the
CMB needs to be boosted at small scales. This can
be achieved, for example, through Staobinsky’s broken
scale invariance (BSI) scenario. The idea is that the
mass spectrum takes a high enough value in the relevant
range whereas it is naturally suppressed at small masses
by inflation and at large masses by the BSI hypothesis.
We will not study those questions here and just consider
the shape of the resulting emission, nor its normalisation
which depends sensitively on the bounds of the mass
spectrum, that are highly model-dependent. As this part
of the study is devoted to the investigation of the shape
of the signal, the y axis on the figures are not normalized.

Fortunately, the results are weakly dependent upon
the shape of the mass spectrum. This is illustrated in
Fig. 5 where di↵erent hypothesis for the exponent � are
displayed. The resulting electromagnetic spectrum is
almost exactly the same. Therefore we only keep one
case (� = �5/2, corresponding to w = 1/3). The black
holes are assumed to be uniformly distributed in the
Universe, which is a meaningful hypothesis as long as

5

�
meas

high
⇠ 2⇡

kBT

(1 + z)

(0.3g�1
⇤ )

1
2

"
H

�1
0

6k⌦1/2
⇤

sinh�1

"✓
⌦⇤

⌦M

◆ 1
2

(1 + z)�
3
2

## 1
4

. (6)

This shows that although the mean wavelength does
decreases as a function of k in both cases, it does not
follow the same general behavior. It scales with k

� 1
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for the low energy component and as k
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4 for the high
energy one.

The following conclusions can be drawn:

• The low energy channel leads to a better single-
event detection than the high energy channel.
Although lower energy dilutes the signal in a
higher astrophysical background, this e↵ect is over-
compensated by the larger amount of photons.

• The di↵erence of maximal distances between the
low- and high energy channels decreases for higher
values of k, i.e. for longer black-hole lifetimes.

• In the low energy channel, for the smaller values
of k, a single bounce can be detected arbitrary far
away in the Universe.

• In all cases, the distances are large enough and ex-
perimental detection is far from being hopeless.
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In addition to the instantaneous spectrum emitted by a
single bouncing black hole, it is interesting to consider the
possible di↵use background due to the integrated emis-
sion of a population of bouncing black holes. Formally,
the number of measured photons detected per unit time,
unit energy and unit surface, can be written as:
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where �ind(E,R) denotes the individual flux emitted
by a single bouncing black hole at distance R and at
energy E, Acc is the angular acceptance of the detector
multiplied by its e�ciency (in principle this is also a
function of E but this will be ignored here), Abs(E,R)
is the absorption function, and n(R) is the number of
black holes bouncing at distance R per unit time and
volume. The distance R and the redshift z entering
the above formula are linked. The integration has to
be carried out up to cosmological distances and it is
therefore necessary to use exact results behind the linear
approximation. The energy is also correlated with R

as the distance fixes the bounce time of the black hole
which, subsequently, fixes the emitted energy.

It is worth considering the n(R) term a bit more in
detail. If one denotes by dn

dMdV
the initial di↵erential

mass spectrum of primordial black holes per unit volume,
it is possible to define n(R) as:
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where the mass spectrum is evaluated for the mass cor-
responding to a time (tH � R
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). If one assumes that pri-

mordial black holes are directly formed by the collapse
of density fluctuations with a high-enough density con-
trast in the early Universe, the initial mass spectrum is
directly related to the equation of state of the Universe
at the formation epoch. It is given by [18, 19]:

dn

dMdV
= ↵M

�1� 1+3w
1+w , (10)

where w = p/⇢. In a matter-dominated universe the
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takes the value � = �5/2.

The normalization coe�cient ↵ will be kept unknown
as it depends on the details of the black hole formation
mechanism. For a sizeable amount of primordial black
holes to form, the power spectrum normalized on the
CMB needs to be boosted at small scales. This can
be achieved, for example, through Staobinsky’s broken
scale invariance (BSI) scenario. The idea is that the
mass spectrum takes a high enough value in the relevant
range whereas it is naturally suppressed at small masses
by inflation and at large masses by the BSI hypothesis.
We will not study those questions here and just consider
the shape of the resulting emission, nor its normalisation
which depends sensitively on the bounds of the mass
spectrum, that are highly model-dependent. As this part
of the study is devoted to the investigation of the shape
of the signal, the y axis on the figures are not normalized.

Fortunately, the results are weakly dependent upon
the shape of the mass spectrum. This is illustrated in
Fig. 5 where di↵erent hypothesis for the exponent � are
displayed. The resulting electromagnetic spectrum is
almost exactly the same. Therefore we only keep one
case (� = �5/2, corresponding to w = 1/3). The black
holes are assumed to be uniformly distributed in the
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This shows that although the mean wavelength does
decreases as a function of k in both cases, it does not
follow the same general behavior. It scales with k
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for the low energy component and as k
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4 for the high
energy one.

The following conclusions can be drawn:

• The low energy channel leads to a better single-
event detection than the high energy channel.
Although lower energy dilutes the signal in a
higher astrophysical background, this e↵ect is over-
compensated by the larger amount of photons.

• The di↵erence of maximal distances between the
low- and high energy channels decreases for higher
values of k, i.e. for longer black-hole lifetimes.

• In the low energy channel, for the smaller values
of k, a single bounce can be detected arbitrary far
away in the Universe.

• In all cases, the distances are large enough and ex-
perimental detection is far from being hopeless.
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In addition to the instantaneous spectrum emitted by a
single bouncing black hole, it is interesting to consider the
possible di↵use background due to the integrated emis-
sion of a population of bouncing black holes. Formally,
the number of measured photons detected per unit time,
unit energy and unit surface, can be written as:
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where �ind(E,R) denotes the individual flux emitted
by a single bouncing black hole at distance R and at
energy E, Acc is the angular acceptance of the detector
multiplied by its e�ciency (in principle this is also a
function of E but this will be ignored here), Abs(E,R)
is the absorption function, and n(R) is the number of
black holes bouncing at distance R per unit time and
volume. The distance R and the redshift z entering
the above formula are linked. The integration has to
be carried out up to cosmological distances and it is
therefore necessary to use exact results behind the linear
approximation. The energy is also correlated with R

as the distance fixes the bounce time of the black hole
which, subsequently, fixes the emitted energy.

It is worth considering the n(R) term a bit more in
detail. If one denotes by dn

dMdV
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responding to a time (tH � R
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). If one assumes that pri-

mordial black holes are directly formed by the collapse
of density fluctuations with a high-enough density con-
trast in the early Universe, the initial mass spectrum is
directly related to the equation of state of the Universe
at the formation epoch. It is given by [18, 19]:
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where w = p/⇢. In a matter-dominated universe the
exponent � ⌘ �1 � 1+3w
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takes the value � = �5/2.

The normalization coe�cient ↵ will be kept unknown
as it depends on the details of the black hole formation
mechanism. For a sizeable amount of primordial black
holes to form, the power spectrum normalized on the
CMB needs to be boosted at small scales. This can
be achieved, for example, through Staobinsky’s broken
scale invariance (BSI) scenario. The idea is that the
mass spectrum takes a high enough value in the relevant
range whereas it is naturally suppressed at small masses
by inflation and at large masses by the BSI hypothesis.
We will not study those questions here and just consider
the shape of the resulting emission, nor its normalisation
which depends sensitively on the bounds of the mass
spectrum, that are highly model-dependent. As this part
of the study is devoted to the investigation of the shape
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Fortunately, the results are weakly dependent upon
the shape of the mass spectrum. This is illustrated in
Fig. 5 where di↵erent hypothesis for the exponent � are
displayed. The resulting electromagnetic spectrum is
almost exactly the same. Therefore we only keep one
case (� = �5/2, corresponding to w = 1/3). The black
holes are assumed to be uniformly distributed in the
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conclusions can be drawn:

• The low energy channel leads to a better single-
event detection than the high energy channel. Al-
though a lower energy dilutes the signal in a
higher astrophysical background, this e↵ect is over-
compensated by the larger amount of photons.

• The di↵erence of maximal distances between the
low- and high energy channels decreases for higher
values of k, i.e. for longer black-hole lifetimes.

• In the low energy channel, for the smaller values
of k, a single bounce can be detected arbitrary far
away in the Universe.

• In all cases, the distances are large enough and ex-
perimental detection is far from being hopeless.

III. INTEGRATED EMISSION

In addition to the instantaneous spectrum emitted by a
single bouncing black hole, it is interesting to consider the
possible di↵use background due to the integrated emis-
sion of a population of bouncing black holes. Formally,
the number of measured photons detected per unit time,
unit energy and unit surface, can be written as:

dNmes

dEdtdS
=

Z
�ind((1+z)E,R) ·n(R) ·A(E) ·f(E,R)dR,

(11)
where �ind(E,R) denotes the individual flux emitted
by a single bouncing black hole at distance R and at
energy E, A(E) is the angular acceptance of the detector
multiplied by its e�ciency, f(E,R) is the absorption
function, and n(R) is the number of black holes bouncing
at distance R per unit time and volume. The distance
R and the redshift z entering the above formula are
linked. The integration has to be carried out up to
cosmological distances and it is therefore necessary to
use exact results behind the linear approximation. The
energy is also correlated with R as the distance fixes the
bounce time of the black hole which, subsequently, fixes
the emitted energy.

It is worth considering the n(R) term a bit more into
the details. If one denotes by dn

dMdV
the initial di↵erential

mass spectrum of primordial black holes per unit volume,
it is possible to define n(R) as:

n(R) =

Z
M(t+�t)

M(t)

dn

dMdV
dM, (12)

leading to

n(R) ⇡ dn

dMdV

�t

8k
, (13)

FIG. 5: Low energy channel signal calculated for di↵erent
mass spectra. As the mass spectrum is not normalized, the
units of the y axis are arbitrary.

where the mass spectrum is evaluated for the mass cor-
responding to a time (tH � R

c
). The shape of the mass

spectrum obviously depends on the details of the for-
mation mechanism (see [39] for a review on PBHs and
inflation). As an example, we shall assume that primor-
dial black holes are directly formed by the collapse of
density fluctuations with a high-enough density contrast
in the early Universe. The initial mass spectrum is then
directly related to the equation of state of the Universe
at the formation epoch. It is given by [33, 40]:

dn

dMdV
= ↵M

�1� 1+3w
1+w , (14)

where w = p/⇢. In a matter-dominated universe the
exponent � ⌘ �1 � 1+3w

1+w
takes the value � = �5/2.

The normalization coe�cient ↵ will be kept unknown
as it depends on the details of the black hole formation
mechanism. For a sizeable amount of primordial black
holes to form, the power spectrum normalized on the
CMB needs to be boosted at small scales. The formula
given above might therefore be correct only within a
limited interval of masses. The idea is that the mass
spectrum takes a high enough value in the relevant
range whereas it is naturally suppressed at small masses
by inflation. We will neither study those questions
here (focusing on the shape of the resulting emission),
nor the normalisation issues which depend sensitively
on the bounds of the mass spectrum, that are highly
model-dependent. As this part of the study is devoted
to the investigation of the shape of the signal, the y

axis on the figures are not normalized. As we show
below, the shape of the signal is quite independent on
the shape of the mass spectrum, so Eq. 14 does not play
any significant role for the spectra computer.

The results are indeed very weakly dependent upon
the shape of the mass spectrum. This is illustrated in
Fig. 5 where di↵erent hypothesis for the exponent � are
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Low energy channel

Different mass spectra 
gives qualitatively same 

diffuse emission… 

PBH MASS SPECTRUM
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1. REMNANTS AS DARK MATTER  
* compatible with PBH formation at reheating 
* stability via minimal area/mass 

2. BOUNCE2 : Bouncing BH in a Bouncing Universe 
- their presence in the contracting phase yields ns scale invariance 
- large “old” volume inside remnants make sense of  the Past Hypothesis  

3. FAST EXPLODING PBH  
- phenomenology depends on the lifetime as short as m2 

- new experimental window for quantum gravity  
- signals in the sub-mm, radio & TeV

direct detection & diffuse emission  
peculiar energy distance relation 
also late-universe observations

SUMMARY ON REMNANTS

what else  
can change if black holes  

explode this way?
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