Laura Cadonati, Georgia Tech LIGO Scientific Collaboration

> **"Colliding Neutron Stars" NSF/LIGO/Sonoma State University/A. Simonnet**

Gravitational Waves: status and prospects

$g_{\mu\nu}=\eta_{\mu\nu}$

Credits: R. Hurt - Caltech / JPL

 $I =$ source mass quadrupole moment R = source distance

Gravitational Waves: Einstein's Messengers

Perturbations of the space-time metric produced by rapid changes in shape and orientation of massive objects.

Dimensionless strain:

$$
h(t) = \frac{1}{R} \frac{2G}{c^4} \ddot{I}(t)
$$

Gravitational waves carry information from the coherent, relativistic motion of large masses

speed of light 2 polarizations (plus, cross)

How to Detect Gravitational Waves

Deformation of a ring of free-falling particles due to the + and x polarization

Physically, gravitational waves are strains

La production de la communicación de la construcción de la construcción de la construcción de la construcción

How to Detect Gravitational Waves **FIOTY LO DELECT OF AVILATIONIAL**

Physically, gravitational waves are strains

LIGO-G1801289 EDSU-2018, Guadeloupe - June 25, 2018 3

Deformation of a ring of free-falling particles due to the + and x polarization Deformation of a ring of free-failing particles experience the colloce of the University of Duke University, 1

• Strength depends on direction relative to the source

How to Detect Gravitational Waves **FIOTY LO DELECT OF AVILATIONIAL**

Physically, gravitational waves are strains

 $\mathbb{P}^{\mathcal{A}}$, it is dependent on direction relative to the source to the sour

LIGO-G1801289 EDSU-2018, Guadeloupe - June 25, 2018 3

Deformation of a ring of free-falling particles due to the + and x polarization Deformation of a ring of free-failing particles experiences

Goal: measure difference in length to one part in 1022, or 10-19 meters

Suspended Mirrors as Test Masses

LIGO: Laser Interferometer Gravitational-wave Observatory

Hanford, WA

- LIGO Observatories construction: 1994-2000
- Initial LIGO operation: 2002-2010
- Advanced LIGO:
	- Ol: Sept 12, 2015 Jan 12, 2016
	- O2: Dec 1, 2016 Aug 25, 2017

The LIGO Laboratory is jointly operated by Caltech and MIT through a Cooperative Agreement between Caltech and the National Science Foundation

Output photodetector: Interferometer noise + gravitational wave signal

More than 300 control loops needed to keep the interferometer optimally running

40 kg high quality fused silica mirrors, isolated from the ground

150W laser, 1064nm 150W laser, 1064nm
(20-25W during 01) Advanced

Fabry-Perot cavities in the Michelson arms ~100kW laser power in O1 (750 kW at full power)

LIGO

A Global Quest

GEO600

VIRGO

LIGO Hanford

LIGO Livingston

Planned

Gravitational Wave Observatories

LIGO India

LIGO-India

KAGRA Japan

1.3 Billion Years Ago….

September 14, 2015

LIVINGSTON, LOUISIANA

135 Million Years Ago….

August 17, 2017

Binary Black Hole Coalescence Binary Neutron Star Coalescence

GW150914 and GW170817: Two ground-breaking discoveries that opened a new era in Gravitational Wave Astronomy

First Discovery: GW150914

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, Observation of Gravitational Waves from a Binary Black Hole Merger - PRL 116:061102, 2016

are filtered with a 35–350 Hz band-pass filter to suppress large fluctuations of \mathcal{D} and \mathcal{D} and \mathcal{D}

LIGO-G1801289 **Participal Species FDSU-2018, Guadeloupe - June 25, 2018** 9 L1 strain. Gwn209
1.9000. Gwn200
1.9+0000. EU data arrived first at H1 data are also shown, shown, shown, shifted in the H1 data are also shown,

Binary Black Hole Mergers in the first Advanced LIGO Observing Run Phys. Rev. X, 6: 041015, 2016

Binary Black Hole Mergers in LIGO's First Science Run

 \sim 250,000 templates

16 million time lags

False Alarm Rate < 1 in 203,000 yr

Most robust evidence for existence of 'heavy' stellar mass BHs $(> 20 M_o)$

Black Hole Masses

BBH most likely formed in a low-metallicity environment: $<$ 1/2 Z_{\odot}

Merger rate of stellar mass BBHs:

12 — 213/Gpc3/yr

LIGO/VIRGO

Credits: LIGO/Caltech/Sonoma State (Simonnet)

Black Hole Spins

GW170104: evidence for spin-orbit misalignment

Beginning to inform formation models: isolated binary evolution vs dynamical formation in dense clusters

PRL 118, 221101 (2016)

Credit: A. Babul/H. Pfeifer/CITA/SXS

Spin, Orientation and Polarization

LIGO alone can only measure one of the polarizations and therefore obtains only limited information about the orientation of the binary. More than 2 locations are needed to disentangle polarization.

A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence Phys. Rev. Lett., 119:141101, 2017

The LIGO-Virgo Network: GW170814

Sky Localization

The inclusion of Virgo improves the sky localization from 1160 deg² to 60 deg² Plausible volume (==> number of possible host galaxies) decreases from 71 to 2.1 ×10⁶ Mpc³

A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence Phys. Rev. Lett., 119:141101, 2017

Sky Localization

The inclusion of Virgo improves the sky localization from 1160 deg² to 60 deg² Plausible volume ($==$ > number of possible host galaxies) decreases from 71 to 2.1 \times 10⁶ Mpc³

A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence Phys. Rev. Lett., 119:141101, 2017

• ~200 EM instruments - satellites and ground based telescopes covering the full spectrum from radio to very high-energy gamma-rays

Gravitational Waves

Radio Waves

Visible/Infrared Light

Leading to O1, LIGO and Virgo signed agreements with 95 groups for EM/neutrino followup of GW events

-
- Worldwide astronomical institutions, agencies and large/small teams of astronomers

Multi-messenger Astronomy with Gravitational Waves

GW150914

 $LVT151012$ ~~~~~~~~~~~~~~~~~~~~~~~

GW151226 mmmmmmmmmmmmmmmmmmm

GW170104 MMWWWW

GW170817

August 17, 2017 - 12:41:04.4 UTC

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral Phys. Rev. Lett., 119:161101, 2017

GW170817 swept the detectors' sensitive band in \sim 100s ($f_{\text{start}} = 24$ Hz) Most significant (network SNR of 32.4), closest and best localized signal signal ever observed by LIGO/Virgo

Discovery of a Binary Neutron Star Merger

August 17, 2017 - 12:41:04.4 UTC

Phys. Rev. Lett., 119:161101, 2017

GW170817 swept the detectors' sensitive band in \sim 100s ($f_{\text{start}} = 24$ Hz) Most significant (network SNR of 32.4), closest and best localized signal signal ever observed by LIGO/Virgo

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

Glitch in L1 1.1 seconds before the coalescence

Similar noise transients are registered roughly once every few hours in each of the LIGO detectors - no temporal correlation between the LIGO sites

glitch cleaning

Discovery of a Binary Neutron Star Merger

LVT151012 ~~~~~~~~~~~~~~~~~~~~

GW170104 MMWWWWM

GW170817

A Coincident Gamma Ray Burst: GRB-170817A

GRB 170817A occurs (1.74 ± 0.05) seconds after GW170817

It was autonomously detected in-orbit by Fermi-GBM (GCN was issued 14s after GRB) and in the routine untargeted search for short transients by INTEGRAL SPI-ACS

GRB 170817A is 3 times more likely to be a short GRB than a long GRB

Probability that GW170817 and GRB 170817A occurred this close in time and with location agreement by chance is 5.0x10-8 (Gaussian equivalent significance of 5.3σ)

> BNS mergers are progenitors of (at least some) SGRBs, and GWs travel at speed of light

Gravitational Waves and Gamma Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A The Astrophysical Journal Letters, 848:L13, 2017

Multi-messenger Observations of a Binary Neutron Star Merger - The Astrophysical Journal Letters, 848:L12, 2017

LIGO-G1801289 EDSU-2018, Guadeloupe - June 25, 2018 20 *Multi-messenger Observations of a Binary Neutron Star Merger* The Astrophysical Journal Letters, 848:L12, 2017

EM SSS17a Followup Campaign and discovery of a

August 17, 2017

August 21, 2017 Swope & Magellan Telescopes

Dying Low Mass Stars

Merging Neutron Stars Exploding Massive Stars Exploding White Dwarfs Cosmic Ray Fission

Big Bang

Kilonova

 v_H - local "Hubble flow" velocity of the source - Use optical identification of the host galaxy NGC 4993

d - distance to the source - Use the GW distance estimate

BNS as Standard Sirens

Gravitational wave cosmology: BNS as standard sirens to measure the rate of expansion of the Universe

A gravitational-wave standard siren measurement of the Hubble constant Nature, 551:85, 2017

 $p(H_0 | GW170817)$ $SHoES¹⁸$ (8% larger) type Ia supernovae 130 140

PRL 119, 161101, 2017

The properties of gravitational-wave sources are inferred by matching the data with predicted waveforms

Component masses are affected by the degeneracy between mass ratio and the aligned spin components x_{1z} and x_{2z}

For low orbital and gravitational-wave frequencies the evolution of the frequency is dominated by chirp mass

As orbit shrinks the gravitational-wave phase is increasing influenced by relativistic effects related to the mass ratio

Early estimates now improved using known source location, improved waveform modeling, and re-calibrated Virgo data. *Properties of the binary neutron star merger GW170817 - arXiv:1805.11579*

$$
\mathcal{M}=\frac{(m_1m_2)^{3/5}}{(m_1+m_2)^{1/5}}
$$

BNS properties

Properties of the binary neutron star merger GW170817 - arXiv:1805.11579

GW170817: Measurements of neutron star radii and equation of state arXiv:1805.11581

Constraining properties of nuclear matter via neutron star equation of state and tidal disruption, which is encoded in the BNS gravitational waveform

tidal deformability parameter $\Lambda \sim k_2$ (R/m)⁵ k2 - second Love number $R, m =$ radius, mass of the neutron star

Neutron Star Structure

Coalescing *Binary Systems*

Neutron Stars, Black Holes

Credit: Chandra X-ray Observatory

'Bursts'

Credit: AEI, CCT, LSU

Casey Reed, Penn State

asymmetric core collapse supernovae cosmic strings Postmerger ???

NASA/WMAP Science Team

Cosmic GW background stochastic, incoherent background

Continuous Sources

Spinning neutron stars crustal deformations, accretion

Gravitational Wave Astrophysics

Observing Scenarios

Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo and KAGRA — https://dcc.ligo.org/LIGO-P1200087/public

Now Early 2020s Late 2020s Mid 2030s

LIGO Concept Roadmap

QNM SNR ~20 for an event like GW150914

after additional commissioning Reach: ~ 2x O2 ~100 BBH/year ~1-2 NS-BH/year ~20-30 BNS/year

Near-term Future: aLIGO target *~10^2 binary coalescences per year (2020)* **O2 aLIGO**

Medium-term Future: A+ **Properties A + 2000s**

210^3 binary coalescences per year (early 2020s)

QNM SNR ~35 for an event like GW150914

aLIGO with frequency-dependent squeezing and lower optical coating thermal noise Reach: ~ 3x O2 ~500-1000 BBH/year ~10 NS-BH/year ~200-300 BNS/year

BNS reach: ~10x O2 BBH reach: z~5

QNM SNR ~80 (for an event like GW150914)

ZUCKER

aLIGO with: Si optics, > 100 kg; Si or AlGaAs coatings; 'mildly' Cryogenic; λ~2 µm, 300 W

Long-term Future for current facilities: Voyager *~10^4 binary coalescences per year (late 2020s)*

The 3rd Generation *~10^5 binary coalescences per year (2030s)* Einstein Telescope

- European conceptual design study
- Multiple instruments in xylophone configuration
- underground to reduce newtonian background
- 10 km arm length, in triangle.
- Assumes 10-15 year technology development.

- 40km surface Observatory baseline
- Signal grows with length not most noise sources
- Thermal noise, radiation pressure, seismic, Newtonian unchanged; coating thermal noise improves faster than linearly with length

Cosmic Explorer

Thank you

