Laura Cadonati, Georgia Tech **LIGO Scientific Collaboration** 





## Gravitational Waves: status and prospects

EDSU-2018, Guadeloupe - June 25, 2018

NSF/LIGO/Sonoma State University/A. Simonnet

# Gravitational Waves: Einstein's Messengers

Perturbations of the space-time metric produced by rapid changes in shape and orientation of massive objects.

Gravitational waves carry information from the coherent, relativistic motion of large masses

speed of light 2 polarizations (plus, cross)



Dimensionless strain:

$$h(t) = \frac{1}{R} \frac{2G}{c^4} \ddot{I}(t)$$

LIGO-G1801289

EDSU-2018, Guadeloupe - June 25, 2018

# $g_{\mu u} = \eta_{\mu u}$





Credits: R. Hurt - Caltech / JPL

I = source mass quadrupole moment R = source distance





# How to Detect Gravitational Waves

## Physically, gravitational waves are strains

the second secon



Deformation of a ring of free-falling particles due to the + and x polarization

LIGO-G1801289



## How to Detect Gravitational Waves

## Physically, gravitational waves are strains

the second s



Deformation of a ring of free-falling particles due to the + and x polarization



LIGO-G1801289



# How to Detect Gravitational Waves

## Physically, gravitational waves are strains



Deformation of a ring of free-falling particles due to the + and x polarization



LIGO-G1801289

### Suspended Mirrors as Test Masses



Goal: measure difference in length to one part in 10<sup>22</sup>, or 10<sup>-19</sup> meters



## LIGO: Laser Interferometer Gravitational-wave Observatory



### Hanford, WA



![](_page_5_Picture_4.jpeg)

The LIGO Laboratory is jointly operated by Caltech and MIT through a Cooperative Agreement between Caltech and the National Science Foundation

LIGO-G1801289

![](_page_5_Picture_8.jpeg)

![](_page_5_Picture_9.jpeg)

### Livingston, LA

- LIGO Observatories construction: 1994-2000
- Initial LIGO operation: 2002-2010
- Advanced LIGO:
  - OI: Sept 12, 2015 Jan 12, 2016
  - O2: Dec 1, 2016 Aug 25, 2017

![](_page_5_Picture_17.jpeg)

![](_page_6_Picture_0.jpeg)

![](_page_6_Picture_1.jpeg)

### 40 kg high quality fused silica mirrors, isolated from the ground

![](_page_6_Picture_4.jpeg)

150W laser, 1064nm (20-25W during 01)

LIGO-G1801289

EDSU-2018, Guadeloupe - June 25, 2018

### More than 300 control loops needed to keep the interferometer optimally running

![](_page_6_Picture_10.jpeg)

**Fabry-Perot cavities** in the Michelson arms ~100kW laser power in O1 (750 kW at full power)

# Advanced LIGO

Output photodetector: Interferometer noise + gravitational wave signal

![](_page_6_Picture_15.jpeg)

# A Global Quest

**GEO600** 

VIRGO

### **LIGO Hanford**

**LIGO** Livingston

### Planned

## **Gravitational Wave Observatories**

LIGO-G1801289

![](_page_7_Picture_7.jpeg)

**LIGO India** 

EDSU-2018, Guadeloupe - June 25, 2018

![](_page_7_Picture_11.jpeg)

## LIGO-India

KAGRA Japan

![](_page_7_Picture_14.jpeg)

![](_page_7_Picture_15.jpeg)

![](_page_8_Picture_0.jpeg)

## GWI50914 and GWI70817: Two ground-breaking discoveries that opened a new era in Gravitational Wave Astronomy

I.3 Billion Years Ago....

September 14, 2015

LIVINGSTON, LOUISIANA

### **Binary Black Hole Coalescence**

LIGO-G1801289

135 Million Years Ago....

August 17, 2017

### **Binary Neutron Star Coalescence**

![](_page_9_Picture_13.jpeg)

![](_page_9_Picture_14.jpeg)

# First Discovery: GWI50914

![](_page_10_Figure_1.jpeg)

Observation of Gravitational Waves from a Binary Black Hole Merger – PRL 116:061102, 2016

![](_page_10_Picture_5.jpeg)

![](_page_11_Figure_0.jpeg)

LIGO-G1801289

# Binary Black Hole Mergers in LIGO's First Science Run

~ 250,000 templates

16 million time lags

False Alarm Rate < 1 in 203,000 yr

Binary Black Hole Mergers in the first Advanced LIGO Observing Run Phys. Rev. X, 6: 041015, 2016

![](_page_11_Picture_9.jpeg)

# Black Hole Masses

![](_page_12_Figure_1.jpeg)

Credits: LIGO/Caltech/Sonoma State (Simonnet)

Most robust evidence for existence of 'heavy' stellar mass BHs (> 20  $M_{\odot}$ )

BBH most likely formed in a low-metallicity environment:  $< \frac{1}{2} Z_{\odot}$ 

Merger rate of stellar mass **BBHs**:

 $12 - 213/Gpc^{3}/yr$ 

### LIGO/VIRGO

![](_page_12_Picture_11.jpeg)

![](_page_13_Figure_1.jpeg)

LIGO-G1801289

EDSU-2018, Guadeloupe - June 25, 2018

Black Hole Spins

PRL 118, 221101 (2016)

![](_page_13_Figure_7.jpeg)

## GW170104: evidence for spin-orbit

### Beginning to inform formation models: isolated binary evolution vs dynamical formation in dense clusters

![](_page_13_Picture_10.jpeg)

# Spin, Orientation and Polarization

![](_page_14_Figure_1.jpeg)

Credit: A. Babul/H. Pfeiffer/CITA/SXS

LIGO alone can only measure one of the polarizations and therefore obtains only limited information about the orientation of the binary. More than 2 locations are needed to disentangle polarization.

LIGO-G1801289

EDSU-2018, Guadeloupe - June 25, 2018

![](_page_14_Figure_6.jpeg)

3

![](_page_15_Figure_1.jpeg)

A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence Phys. Rev. Lett., 119:141101, 2017

LIGO-G1801289

EDSU-2018, Guadeloupe - June 25, 2018

The LIGO-Virgo Network: GW170814

![](_page_15_Figure_6.jpeg)

![](_page_15_Picture_7.jpeg)

![](_page_15_Picture_8.jpeg)

# Sky Localization

### The inclusion of Virgo improves the sky localization from 1160 deg<sup>2</sup> to 60 deg<sup>2</sup> Plausible volume (==> number of possible host galaxies) decreases from 71 to 2.1 ×10<sup>6</sup> Mpc<sup>3</sup>

![](_page_16_Figure_2.jpeg)

A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence Phys. Rev. Lett., 119:141101, 2017

LIGO-G1801289

![](_page_16_Picture_7.jpeg)

# Sky Localization

### The inclusion of Virgo improves the sky localization from 1160 deg<sup>2</sup> to 60 deg<sup>2</sup> Plausible volume (==> number of possible host galaxies) decreases from 71 to 2.1 ×10<sup>6</sup> Mpc<sup>3</sup>

![](_page_17_Figure_2.jpeg)

A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence Phys. Rev. Lett., 119:141101, 2017

LIGO-G1801289

![](_page_17_Picture_6.jpeg)

# Multi-messenger Astronomy with Gravitational Waves

![](_page_18_Picture_1.jpeg)

Gravitational Waves

![](_page_18_Picture_3.jpeg)

Visible/Infrared Light

![](_page_18_Picture_5.jpeg)

Radio Waves

Leading to O1, LIGO and Virgo signed agreements with 95 groups for EM/neutrino followup of GW events

- Worldwide astronomical institutions, agencies and large/small teams of astronomers

LIGO-G1801289

EDSU-2018, Guadeloupe - June 25, 2018

• ~200 EM instruments - satellites and ground based telescopes covering the full spectrum from radio to very high-energy gamma-rays

![](_page_18_Picture_14.jpeg)

![](_page_18_Picture_15.jpeg)

![](_page_18_Picture_16.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_1.jpeg)

LVT151012 ~~~~~~~~

### GW170817

| 0.00 | 0.25 | 0.50 | 0.75     | 1.00      | 1.25     | 1.50 | 1.75 | 2.00 |
|------|------|------|----------|-----------|----------|------|------|------|
|      |      |      | time obs | ervable ( | seconds) |      |      |      |
|      |      |      |          |           |          |      |      |      |

## *Phys. Rev. Lett.*, 119:161101, 2017

### August 17, 2017 - 12:41:04.4 UTC

![](_page_19_Figure_10.jpeg)

GW170817 swept the detectors' sensitive band in ~100s (f<sub>start</sub> = 24Hz) Most significant (network SNR of 32.4), closest and best localized signal signal ever observed by LIGO/Virgo

LIGO-G1801289

# Discovery of a Binary Neutron Star Merger

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

![](_page_19_Picture_17.jpeg)

![](_page_19_Picture_18.jpeg)

# Discovery of a Binary Neutron Star Merger

![](_page_20_Picture_1.jpeg)

LVT151012 ~~~~~~~

### GW170817

| 0.00 | 0.25 | 0.50 | 0.75     | 1.00      | 1.25     | 1.50 | 1.75 | 2.00 |
|------|------|------|----------|-----------|----------|------|------|------|
|      |      |      | time obs | ervable ( | seconds) |      |      |      |
|      |      |      |          |           |          |      |      |      |

## Phys. Rev. Lett., 119:161101, 2017

### August 17, 2017 - 12:41:04.4 UTC

![](_page_20_Figure_10.jpeg)

GW170817 swept the detectors' sensitive band in ~100s (f<sub>start</sub> = 24Hz) Most significant (network SNR of 32.4), closest and best localized signal signal ever observed by LIGO/Virgo

![](_page_20_Figure_12.jpeg)

LIGO-G1801289

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

Glitch in L1 1.1 seconds before the coalescence

Similar noise transients are registered roughly once every few hours in each of the LIGO detectors - no temporal correlation between the LIGO sites

glitch cleaning

![](_page_20_Picture_20.jpeg)

17

## A Coincident Gamma Ray Burst: GRB-170817A

![](_page_21_Figure_1.jpeg)

Gravitational Waves and Gamma Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A The Astrophysical Journal Letters, 848:L13, 2017

LIGO-G1801289

GRB 170817A occurs ( $1.74 \pm 0.05$ ) seconds after GW170817

It was autonomously detected in-orbit by Fermi-GBM (GCN) was issued 14s after GRB) and in the routine untargeted search for short transients by INTEGRAL SPI-ACS

GRB 170817A is 3 times more likely to be a short GRB than a long GRB

Probability that GW170817 and GRB 170817A occurred this close in time and with location agreement by chance is **5.0x10**-8 (Gaussian equivalent significance of 5.3σ)

> BNS mergers are progenitors of (at least some) SGRBs, and GWs travel at speed of light

![](_page_21_Picture_11.jpeg)

![](_page_21_Picture_12.jpeg)

![](_page_22_Figure_0.jpeg)

Multi-messenger Observations of a Binary Neutron Star Merger — The Astrophysical Journal Letters, 848:L12, 2017

LIGO-G1801289

![](_page_22_Picture_4.jpeg)

![](_page_23_Figure_0.jpeg)

Multi-messenger Observations of a Binary Neutron Star Merger The Astrophysical Journal Letters, 848:L12, 2017 LIGO-G1801289

# EM SSS17a Followup Campaign and discovery of a

August 17, 2017

August 21, 2017 Swope & Magellan Telescopes

| 1<br>H   |          |          | E        | lei      | me       | ent      | t 0      | rig      | in       | S        |          |          |          |          |          |          | 2<br>He  |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 3<br>Li  | 4<br>Be  |          |          |          |          |          |          |          |          |          |          | 5<br>B   | 6 C      | N        | 8<br>0   | 9 F      | 10<br>Ne |
| 11<br>Na | 12<br>Mg |          |          |          |          |          |          |          |          |          |          | 13<br>Al | 14<br>Si | 15<br>P  | 16<br>S  | 17<br>Cl | 18<br>Ar |
| 19<br>K  | 20<br>Ca | 21<br>Sc | 22<br>Ti | 23<br>V  | 24<br>Cr | 25<br>Mn | 26<br>Fe | 27<br>Co | 28<br>Ni | 29<br>Cu | 30<br>Zn | 31<br>Ga | 32<br>Ge | 33<br>As | 34<br>Se | 35<br>Br | 36<br>Kr |
| 37<br>Rb | 38<br>Sr | 39<br>Y  | 40<br>Zr | 41<br>Nb | 42<br>Mo | 43<br>Tc | 44<br>Ru | 45<br>Rh | 46<br>Pd | 47<br>Ag | 48<br>Cd | 49<br>In | 50<br>Sn | 51<br>Sb | 52<br>Te | 53<br>I  | 54<br>Xe |
| 55<br>Cs | 56<br>Ba |          | 72<br>Hf | 73<br>Ta | 74<br>W  | 75<br>Re | 76<br>Os | 77<br>Ir | 78<br>Pt | 79<br>Au | 80<br>Hg | 81<br>TI | 82<br>Pb | 83<br>Bi | 84<br>Po | 85<br>At | 86<br>Rn |
| 87<br>Fr | 88<br>Ra |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |

| 89 | 90 | 91 | 92 |
|----|----|----|----|
| Ac | Th | Pa | U  |

**Dying Low Mass Stars** 

Merging Neutron Stars Exploding Massive Stars Exploding White Dwarfs Cosmic Ray Fission

EDSU-2018, Guadeloupe - June 25, 2018

Kilonova

![](_page_23_Picture_10.jpeg)

![](_page_23_Figure_12.jpeg)

![](_page_23_Figure_13.jpeg)

20

# BNS as Standard Sirens

![](_page_24_Figure_1.jpeg)

A gravitational-wave standard siren measurement of the Hubble constant Nature, 551:85, 2017

LIGO-G1801289

 $p(H_0 | \text{GW170817})$ SHoES<sup>18</sup> (8% larger) type la supernovae 130 140

Gravitational wave cosmology: BNS as standard sirens to measure the rate of expansion of the Universe

VH - local "Hubble flow" velocity of the source - Use optical identification of the host galaxy NGC 4993

d - distance to the source - Use the GW distance estimate

![](_page_24_Picture_11.jpeg)

21

# BNS properties

![](_page_25_Figure_1.jpeg)

PRL 119, 161101, 2017

The properties of gravitational-wave sources are inferred by matching the data with predicted waveforms

For low orbital and gravitational-wave frequencies the evolution of the frequency is dominated by chirp mass

As orbit shrinks the gravitational-wave phase is increasing influenced by relativistic effects related to the mass ratio

Component masses are affected by the degeneracy between mass ratio and the aligned spin components  $\chi_{1z}$  and  $\chi_{2z}$ 

Early estimates now improved using known source location, improved waveform modeling, and re-calibrated Virgo data. Properties of the binary neutron star merger GW170817 - arXiv:1805.11579

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

![](_page_25_Picture_12.jpeg)

![](_page_25_Picture_18.jpeg)

![](_page_26_Figure_0.jpeg)

# Neutron Star Structure

![](_page_26_Figure_3.jpeg)

EDSU-2018, Guadeloupe - June 25, 2018

Properties of the binary neutron star merger GW170817 - arXiv:1805.11579

GW170817: Measurements of neutron star radii and equation of state arXiv:1805.11581

Constraining properties of nuclear matter via neutron star equation of state and tidal disruption, which is encoded in the BNS gravitational waveform

tidal deformability parameter  $\Lambda \sim k_2 (R/m)^5$ k<sub>2</sub> - second Love number R, m = radius, mass of the neutron star

![](_page_26_Figure_9.jpeg)

![](_page_26_Figure_11.jpeg)

![](_page_26_Figure_12.jpeg)

![](_page_26_Picture_13.jpeg)

# Gravitational Wave Astrophysics

![](_page_27_Picture_1.jpeg)

Coalescing Binary Systems

Neutron Stars, Black Holes

Credit: AEI, CCT, LSU

![](_page_27_Picture_5.jpeg)

Casey Reed, Penn State

### **Continuous Sources**

Spinning neutron stars crustal deformations, accretion

LIGO-G1801289

![](_page_27_Picture_11.jpeg)

Credit: Chandra X-ray Observatory

### 'Bursts'

asymmetric core collapse supernovae cosmic strings Postmerger ???

![](_page_27_Figure_15.jpeg)

NASA/WMAP Science Team

Cosmic GW background stochastic, incoherent background

![](_page_27_Picture_18.jpeg)

# Observing Scenarios

![](_page_28_Figure_1.jpeg)

Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo and KAGRA — https://dcc.ligo.org/LIGO-P1200087/public

LIGO-G1801289

![](_page_28_Picture_5.jpeg)

![](_page_28_Picture_6.jpeg)

# LIGO Concept Roadmap

![](_page_29_Figure_1.jpeg)

![](_page_29_Figure_2.jpeg)

![](_page_29_Figure_3.jpeg)

Now

### Late 2020s Mid 2030s Early 2020s

EDSU-2018, Guadeloupe - June 25, 2018

LIGO-G1801289

![](_page_29_Picture_7.jpeg)

# Near-term Future: aLIGO target ~10^2 binary coalescences per year (2020)

![](_page_30_Figure_1.jpeg)

LIGO-G1801289

![](_page_30_Figure_4.jpeg)

after additional commissioning Reach:  $\sim 2 \times O2$ ~100 BBH/year ~I-2 NS-BH/year ~20-30 BNS/year

### QNM SNR ~20 for an event like GW150914

![](_page_30_Figure_7.jpeg)

EDSU-2018, Guadeloupe - June 25, 2018

![](_page_30_Picture_9.jpeg)

27

## Medium-term Future: A+ ~10^3 binary coalescences per year (early 2020s)

![](_page_31_Figure_1.jpeg)

LIGO-G1801289

![](_page_31_Figure_4.jpeg)

aLIGO with frequency-dependent squeezing and lower optical coating thermal noise Reach:  $\sim 3 \times O2$ ~500-1000 BBH/year ~10 NS-BH/year ~200-300 BNS/year

![](_page_31_Figure_6.jpeg)

### QNM SNR ~35 for an event like GW150914

![](_page_31_Picture_9.jpeg)

![](_page_31_Picture_10.jpeg)

![](_page_31_Picture_11.jpeg)

## Long-term Future for current facilities: Voyager ~10^4 binary coalescences per year (late 2020s)

![](_page_32_Figure_1.jpeg)

LIGO-G1801289

aLIGO with: Si optics, > 100 kg; Si or AlGaAs coatings; 'mildly' Cryogenic; λ~2 μm, 300 W

BNS reach: ~10x O2 BBH reach: z~5

QNM SNR ~80 (for an event like GW150914)

![](_page_32_Figure_7.jpeg)

**ZUCKER** 

![](_page_32_Picture_10.jpeg)

## The 3rd Generation ~10^5 binary coalescences per year (2030s) Einstein Telescope

- European conceptual design study
- Multiple instruments in xylophone configuration
- underground to reduce newtonian background
- 10 km arm length, in triangle.
- Assumes 10-15 year technology development.

## Cosmic Explorer

- 40km surface Observatory baseline
- Signal grows with length not most noise sources
- Thermal noise, radiation pressure, seismic, Newtonian unchanged; coating thermal noise improves faster than linearly with length

![](_page_33_Picture_15.jpeg)

![](_page_33_Figure_16.jpeg)

![](_page_33_Figure_17.jpeg)

![](_page_33_Picture_18.jpeg)

![](_page_34_Picture_0.jpeg)

# Thank you

![](_page_34_Picture_2.jpeg)