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Outline
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• Short introduction 

• Exploiting shower shape variables

• Using hits in regular geometries

• Irregular geometries

• Seedless inference

• More focus on techniques than on calorimeters or results

Image search using this talk's title
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High granularity calorimeters
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CALICE, FCChh (barrel), 

CMS HGCal
• In parts very different 

concepts

‣ LAr,

‣ Si (+SiPM)

‣ SiPM

• However similar granularities

‣ About 1cm x 1cm transversal 

(ECal)

‣ > 10 layers longitudinal
M. Aleksa: https://indico.cern.ch/event/838435

F.Simon: https://indico.cern.ch/event/838435

CMS TDR 17-007

https://indico.cern.ch/event/838435
https://indico.cern.ch/event/838435
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High granularity calorimeters
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• Handle Pileup

‣ 200 (CMS) - 1000 (FCChh)

• High precision energy 

measurements

‣ Missing energy/precision 

resolution

• Fully consistent Particle Flow

• Particle ID

‣ Also part of software 

compensation

• Fully utilise timing
• Similar w.r.t. basic reconstruction concepts 
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Calorimeter Reconstruction
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Energy reconstruction

Shower separation Shower identification

Software

Compensation

etc

Particle

Flow, pileup

suppression
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HG calorimeters and ML
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• High granularity calorimeters produce 3D/4D images of showers

• Deep neural networks have made many advances possible in the last years

‣ Image classification, face recognition, …., self-driving cars, …

‣ More and more applications in HEP (jet-tagging,…)

• Very powerful where 'things get messy’: e.g. real cows versus spheric cows in vacuum
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• Three off-the-shelf DNN types / building blocks

‣ Fully connected ‘dense’ (very powerful but many parameters)

‣ Recurrent (‘time’ series, good for sparsity, less parallelisable)

‣ Convolutional (translation invariant structures, key to image processing)

• Rather recent developments: Graph neural networks

‣ Will cover details later

• All mostly matrix

multiplications

‣ Fast and parallelisable

• Approximate an unknown

function: structure is the key!

• Trained by minimising a loss function

Jan Kieseler

Basic DNN building blocks
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Adam: D. Kingma, J. Ba, arXiv:1412.6980, conf. paper

AdaGrad: J. Duchi, E. Hazan, Y. Singer (2011)

RMSProp: T. Tieleman, G. Hinton (2012)

Stochastic gradient descent: H. Robbins; S. Monro (1951)
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Particle Identification

8

• Most important: separate EM showers 

from hadronic showers

‣ Utilise global shower shape variables

‣ Process individual hits with DNNs based on

off-the shelf convolutional layers as used for 

computer vision

• High performance particle classification 

even in high pileup environments is 

possible already using off-the shelf 

architectures

CALICE AHCAL 

Work in progress

CALICE AHCAL 

Work in progress

Plots: V. Bocharnikov,

CMS TDR-17-007
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Software compensation
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• Separate electromagnetic and hadronic components

‣ Strongly increased resolution for hadron showers

• Human engineered: 

‣ weight EM components less than hadronic components

‣ Identify EM components by local energy density

• Machine-learning based

‣ Consider shower shapes, in particular longitudinal

‣ Feed in dense NNs

Charged pions

CALICE 

plots: C. Graf

CALICE

Work in progress

Simulations
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Software compensation
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• How does calorimeter segmentation impact software compensation 

• Turn it around: use DNN as a tool for (almost) optimal reconstruction

• Consider lead tungsten calorimeter

‣ Factorise out sampling and electronics

effects

‣ 1m x 1m x 2.5m 

‣ 10 λ , 200 X0

• Compare different longitudinal

segmentations

‣ 10 λ

‣ 2 λ ~ 40 X0

‣ 0.4 λ ~ 8 X0

‣ 0.08 λ ~ 1.6 X0

• Resolution saturates between 2 and 0.4 λ for full energy range

C. Neubüser, JK, paper in prep.
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Exploiting more granularity
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• Showers in calorimeters are similar to images

• However, energy determination is very different from shower 

classification

‣ Determine energy: one obvious ‘good’ choice: energy sum: weight = 1

‣ Classify: omit large weights, usually correlated to overtraining

• Need to develop dedicated CNN-like structure
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Dedicated CNN structures
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• Apply to charged pion showers in 

FCChh barrel calorimeter

‣ HCal: 17x17x10x2

‣ ECal: 34x34x8x2 → 17x17x8x8

• In total 4 blocks with different kernel 

sizes

• Dense layers → energy

C. Neubüser, et al, arXiv:1912.09962

Correction
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“correction"

block:

- overlapping

kernels,

- more nodes,

more internal

layers,

non-

linearities

- initialised with

small weights

Regularised

“direct” block:

non-overlapping 

kernels + feed-

forward sum

Sum

⨁

Calo-Resnet

direct: (2,2,1)

correction: (3,3,2), (2,2,3)

Calo-Resnet

direct: (4,4,1)

correction: (4,4,2), (2,2,3)

Calo-Resnet

direct: (1,1,3)

correction: (3,3,2), (2,2,4)

Calo-Resnet

direct: (2,2,3)

correction: (3,3,3), (3,3,3)

Resnet [1] inspired, [1] K. He, arxiv:1512.03385
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Results and linearity
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• High gain from ML based approach

• Sampling term of only 37%

• Linearity at edges not optimal → very common

‣ Network learns quickly: E>0 

‣ Expectation value and mean differ

• Solution

‣ Add global correction layer

‣ In the last iterations, fix the rest

‣ Train correction layer using randomly chosen 

bins to minimise <E>-<Etrue>
C. Neubüser, et al, arXiv:1912.09962

More details will be in C. Neubüser, JK, paper in prep.



Jan KieselerJan Kieseler

Going beyond regular geometries
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• Detectors are not regular grids

• E.g. CMS HGCal

‣ Hexagonal sensors 

‣ Size changes with depth and η
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Representation of showers
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• Dense energy deposits

• Deposits connected by tracks

➡Showers have physical graph like structure

➡Hits can be represented by point clouds

CALICE Image from https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e
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Irregular Structures

16

• ..do not represent particles or most sensor arrays in a detector

• Graph networks

‣ No sorting required

‣ No grid

‣ Sense of connection

‣ Basic principle: information exchange 

through edges (connections)

‣ Very active area of research in CS

• Off-the shelf architectures…

Low input dimensionality Clear sense of sorting / sequences Regular grid

Brandes et al., 2008

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.6623
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Going beyond CNNs
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• Using graph neural networks for reconstruction

‣ Represent showers as point clouds

‣ In particularly interesting: 

dynamic graph networks learning space 

transformations (no human engineered edges)

• Here in a simplified irregular calorimeter

‣ PbW, 35 cm x 35 cm x 2.2 m

• Predict fractions per hit for 2 overlapping 

charged pion showers

‣ Energy: 10-100 GeV

Sensor → vertex Connection → edge
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Applicable dynamic graph networks
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• Proposal for 3D segmentation of point clouds:

EdgeConv/DGCNN [1] similar to our problem

‣ Transform features per vertex (sensor) (64)

‣ Calculate distances in new feature space

‣ Collect K neighbours

‣ Transform edge features

(distance vectors between sensors)

‣ Collect maxima to determine new vertex properties

• Proven very powerful for segmentation

• Also successfully used for jet identification [2] 

• Fractional assignment is not ‘just' segmentation

• Very resource demanding network architecture

• Can we do better?

DGCNN

[1] Y. Wang, et al, arXiv:1801.07829

[2] H. Qu, L. Gouskos, arXiv:1902.08570
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GravNet/GarNet
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• Most resource demanding operation in DGCNN

‣ Determine neighbours in FIN dimensions

‣ Iteration over edges between K neighbours in FIN dimensions

• GravNet/GarNet circumvent this problem

‣ Split coordinate and feature space

• GravNet

• GarNet

S.R. Qasim, J.K, Y. Iiyama, M Pierini arXiv:1902.07987, EPJC
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Models
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• Similar total depth (counting all trainable transformations)

• All models approx 100k free parameters

EdgeConv

GE

Feature transform

FT

FT

Pred

4x

Input Vertices

EdgeConv

GE

Feature transform

GravNet

GE

3 Feature transform

FT

FT

Pred

GravNet

GE

3 Feature transform

Input Vertices

4x

GarNet

GE

Feature transform

FT

FT

Pred

11x
GarNet

Input Vertices

GarNet

“DGCNN” GravNet GarNet
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Results
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• The graph network architectures outperform the CNN 

approach

• Similar performance but lower resource requirements of 

GravNet versus DGCNN

• Competitive performance and very low resource 

requirements for Garnet

• These architectures are applicable to (sparse) data with 

any structure, e.g. tracking, jets, …

Truth - for reference Prediction

20 - 80% overlap

S.R. Qasim, J. K, Y. Iiyama, M Pierini arXiv:1902.07987, EPJC
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Interpretation
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• Visualise distances in the latent coordinate space

• Without direct supervision, the networks tend to 

cluster vertices belonging to the same shower

• Seems to be a common feature of distance based 

dynamic graph networks

Prediction
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Application to CMS HGCal
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• Dataset

‣ Full CMS HGCal simulation

‣ 1-5 showers from electrons, photons, muons, charged 

pions within DR=0.5

‣ 10-100 GeV

‣ About 500k events

‣ Hits pre-clustered on each layer (less inputs)

• Use GravNet with small adjustments

‣ 5 output nodes, predicting shower fractions

‣ 2 additional message passing layers in latent space

CMS DP-2020/001
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Results
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• Excellent shower reconstruction

• But what if there are more than 5 particles?
CMS DP-2020/001
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One approach: Edge classifiers
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• Inspired by HEP.TrkX [1,2], edge classifiers can overcome the problem

• Objects appear as vertices that are connected

to each other, but not connected to others

• Edges can carry additional information like particle ID

• Recipe [3]:

‣ Pre-define a graph containing all possibly true edges

(e.g. neighbours within a sphere)

‣ Train the network and perform inference

‣ Select edges with a predicted probability of more than 0.5 to be true as connections

EdgeConv [4]

[1] S. Farrel et al, arxiv:1810.06111,

[2] 10.1051/epjconf/201715000003

[3] X. Ju et al, https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_83.pdf

[4] Y. Wang, et al, arXiv:1801.07829. (DGCNN)
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Edge Classifier in calorimeter
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• CMS HGCal

• Single charged pions in 0 PU

• Excellent discrimination between noise and  signal

• Needs more developments for fractional assignments, very small objects

• N x K edges need to be evaluated to determine object and its properties

‣ Mean over edges for properties or e.g. weight with edge score

X. Ju et al, https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_83.pdf

https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_83.pdf
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Take a step back
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• What we actually want: particle ID, momentum, position

• Segmentation just a tool

• Standard chain has many redundancies
‣ Seeding (pattern recognition)

‣ Clustering (pattern recognition)

‣ Software compensation (pattern recognition)

‣ ID (pattern recognition)

‣ PFlow  (pattern recognition)

• Always the same patterns

• One-stage approach can save resources and is easier to maintain
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A look at computer vision
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• Well known from object detection in images

• Two main approaches:

‣ “Traditional’ anchor point based approaches  [1-4], …

‣ Anchor-free approaches, using each pixel [5,6, …]

T. Lin et al, arXiv:1405.0312

[1] J. Redmond et al, arXiv:1506.02640

[2] Y. Hu et al, arXiv:1803.11187

[3] R. Girshick, arXiv:1504.08083

[4] T. Lin et al, arXiv:1708.02002

[5] N. Wang et al, arXiv:1904.01355

[6] X. Zhou et al, arXiv:1904.07850 
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Anchor point based methods
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• Anchor points (M x M per image)

• Assign object score/bounding box to anchor point

• Object can be found multiple times

• Anchor points grow with with N^(dim), make implicit assumptions on object size

• Not suitable for reconstruction based on high-dimensional detector signals

Figures: towardsdatascience.com

http://towardsdatascience.com
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Key point methods
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• Identify key points of the object

• Predict object properties from key points

Problem: identify the key points
• Also predict ‘center-score’ 

• Select highest score in the area as key point

‣ Seed identification!

‣ Heavily relies on objects to have a center: problematic for a particle

• Remaining ambiguities still need to be resolved N. Wang et al, arXiv:1904.01355

X. Zhou et al, arXiv:1904.07850 
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Non maximum suppression
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• Start with highest score

• Downweight ‘close’ by objects 

using IoU (Soft NMS)

• Relies on bounding boxes

• Not easily adaptable to particles 

in detectors

N. Bodla et al, arXiv:1704.04503

Figures: towardsdatascience.com

http://towardsdatascience.com
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Segmentation and Clustering
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• Maximum number of objects per 

image/point cloud: 

number of pixels/vertices

• Learn to move pixels towards the object

center

• Map to Gaussian probability

• Assign seed score

• Collect (from highest seeds score) around 

the seeds

• ‘Only' performs segmentation

• Heavily relies on the center of an object

‣ Problematic concept for particles

D. Neven et al, arXiv:1906.11109

B. Zhang, P. Wonka, arXiv:1912.00145
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Object condensation
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• Aim

‣ Determine object properties (e.g. particle 4 momenta, ID) (graphs, images, …)

‣ Aggregate all object properties in representative 'condensation point’

‣ Detach input space (3D/4D/5D) from output space 

‣ Resolve ambiguities without IoU (boxes) concept

‣ Allow for fractional/ambiguous assignments

• Define truth:

‣ Assign each vertex to one object (e.g. highest fraction)

‣ Assign all object properties to each assigned vertex

• Predict per vertex

‣ Object properties

‣ Confidence β

‣ Cluster coordinates x

• Define charge, attractive and repulsive potential
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Condensate and predict
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• Maximum β/charge vertices are

center points *

• Encourage network to select one representative 

point per object k

• Also weight object property loss with β

• Condensation points will carry all object properties

• Very natural approach for dynamic graph NN JK, paper in prep.

Maximum charge 

vertex for object k

*NB: Removes saddle point for large N
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Example on image data
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• Proof of principle using images with large overlaps

‣ Condensation, object ID

‣ Rather simple CNN

• Visualise βi / βmax as alpha value

Cluster coordinates

JK, paper in prep.
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Results
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• Inference

‣ Start with highest β vertex, collect points in td≅0.9

‣ Get object properties

‣ Repeat until βmin≅0.1

• Object condensation allows to predict K particles from N detector inputs

‣ Paves the way for one-stage approaches in reconstruction

‣ ‘Just' needs to be combined with the networks proven to work well
JK, paper in prep.

Not fully trained model

Cluster coordinates
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It all comes together
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• All tools at hand

• Near future will be exciting
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Summary
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• High granularity calorimeters are widely accepted in 

HEP to control backgrounds, pileup and precise particle 

flow

• Very promising performance of ML algorithms in high 

granularity calorimeters

‣ Direct link to particle flow

• Pushing forward developments for particle 

reconstruction

• Pushing forward new machine learning approaches 

Prediction


