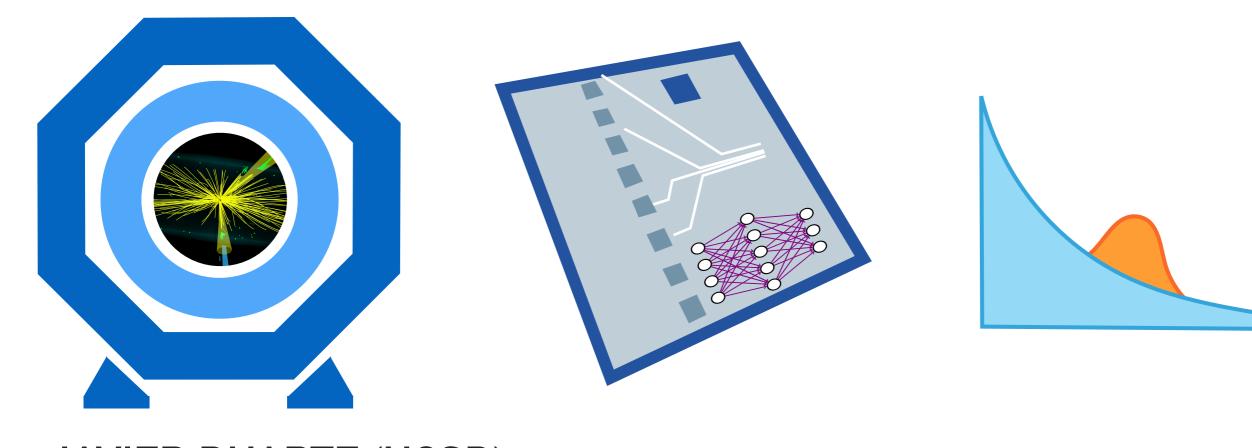
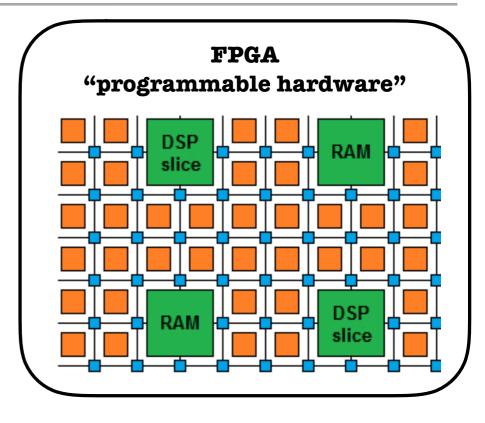
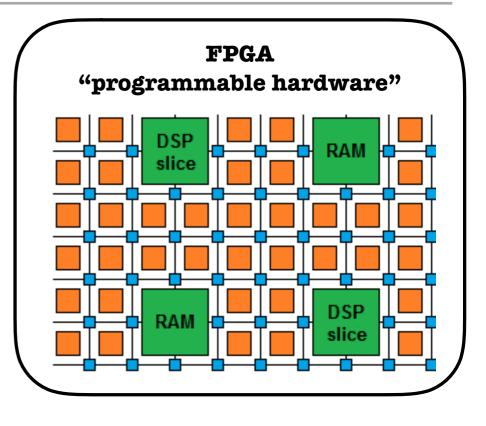
NEW IDEAS & TECHNOLOGIES IN TRIGGER FOR HL-LHC (AND RUN 3)

JAVIER DUARTE (UCSD) OCTOBER 23, 2019 WEST COAST LHC JAMBOREE, SLAC

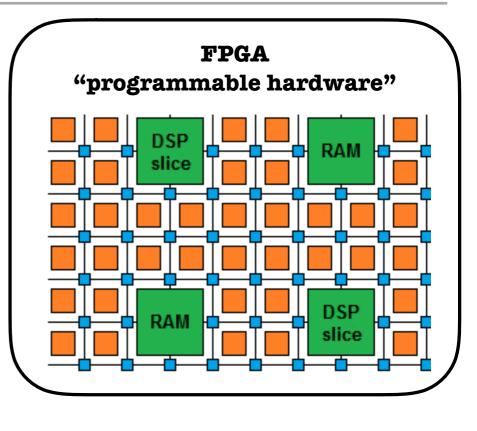




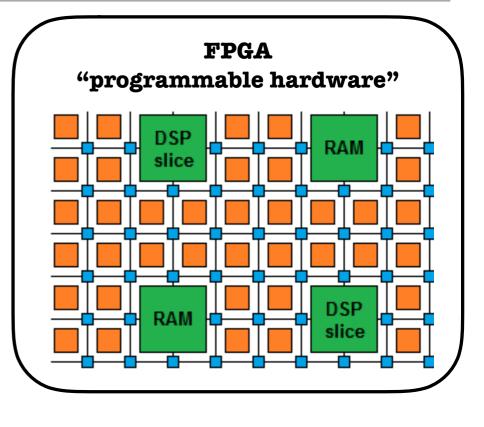
 Modern FPGAs with large amounts of embedded components that perform multiplication (DSPs), apply logical functions (LUTs), or store memory (BRAM)



- Modern FPGAs with large amounts of embedded components that perform multiplication (DSPs), apply logical functions (LUTs), or store memory (BRAM)
- High level synthesis to more easily program FPGAs

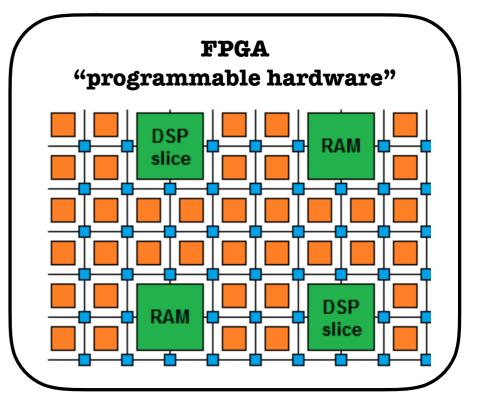


- Modern FPGAs with large amounts of embedded components that perform multiplication (DSPs), apply logical functions (LUTs), or store memory (BRAM)
- High level synthesis to more easily program FPGAs
- Sophisticated algorithms

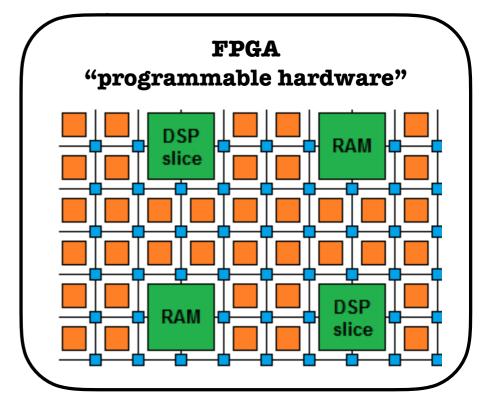


Modern FPGAs with large amounts of embedded components that perform multiplication (DSPs), apply logical functions (LUTs), or store memory (BRAM)

- Sophisticated algorithms
- Machine learning

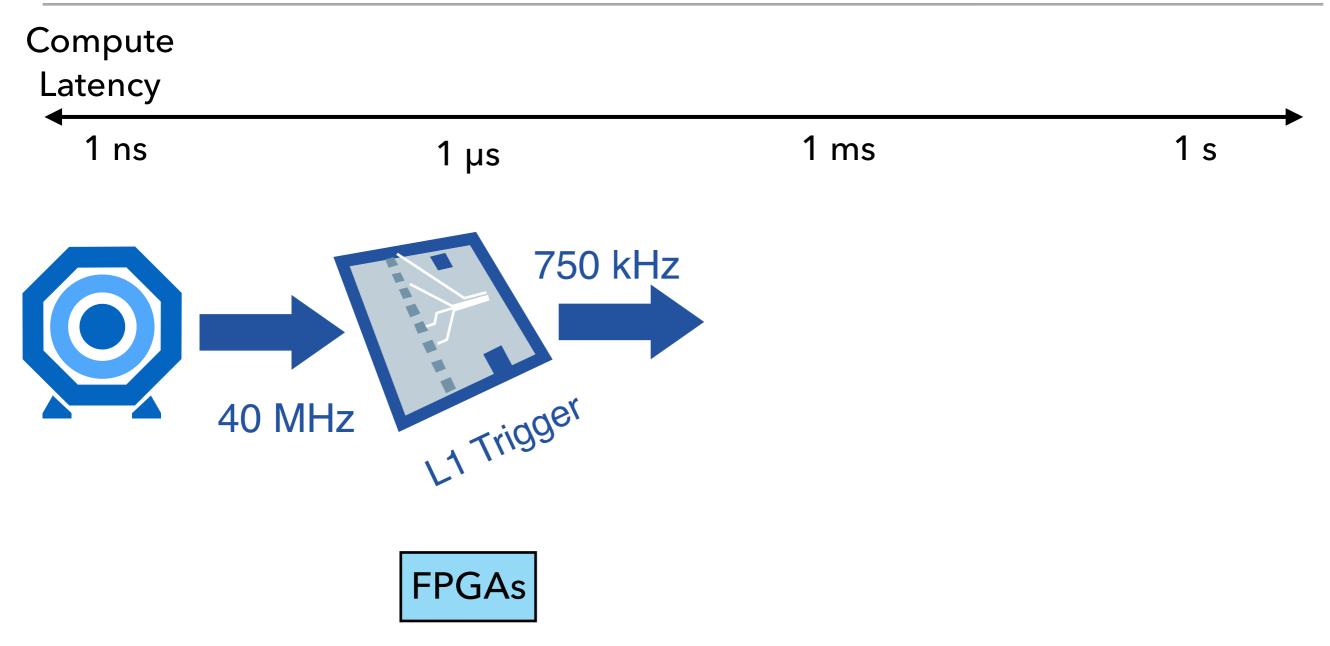


Modern FPGAs with large amounts of embedded components that perform multiplication (DSPs), apply logical functions (LUTs), or store memory (BRAM)



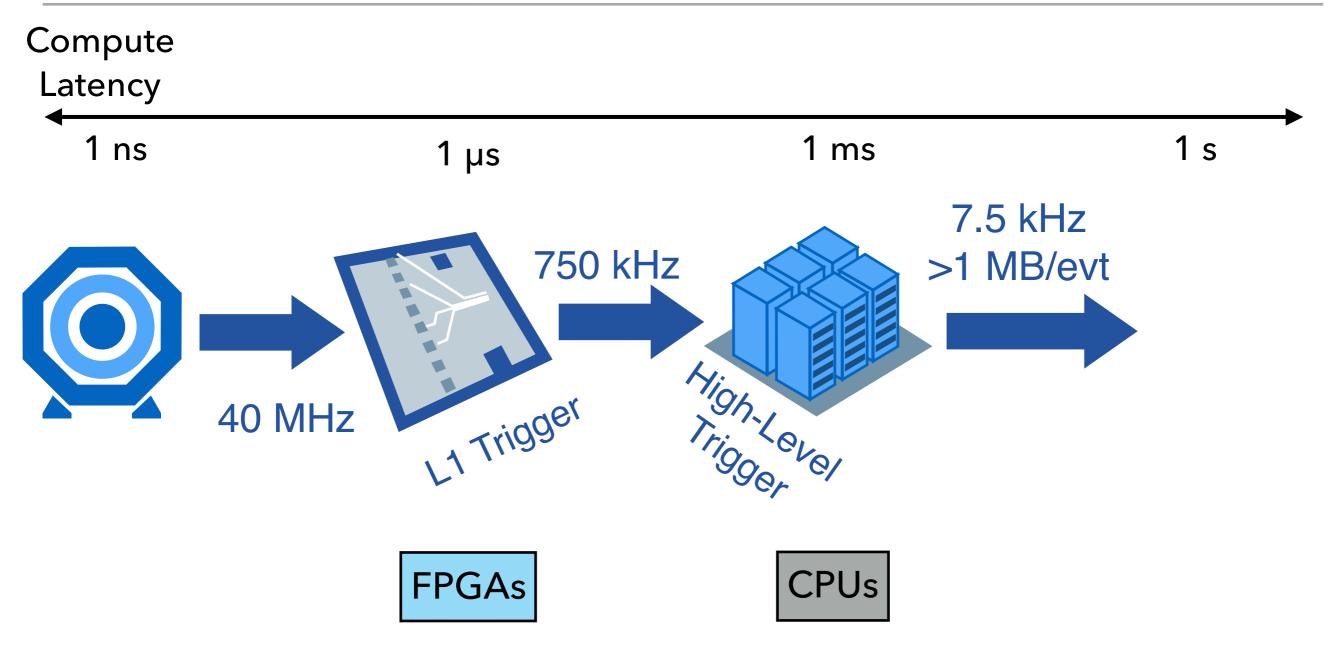
- High level synthesis to more easily program FPGAs
- Sophisticated algorithms
- Machine learning
- GPUs or FPGAs or ASICs as **co-processors** for software trigger

Challenges: Each collision produces O(10³) particles The detectors have O(10⁸) sensors Extreme data rates of O(100 TB/s)



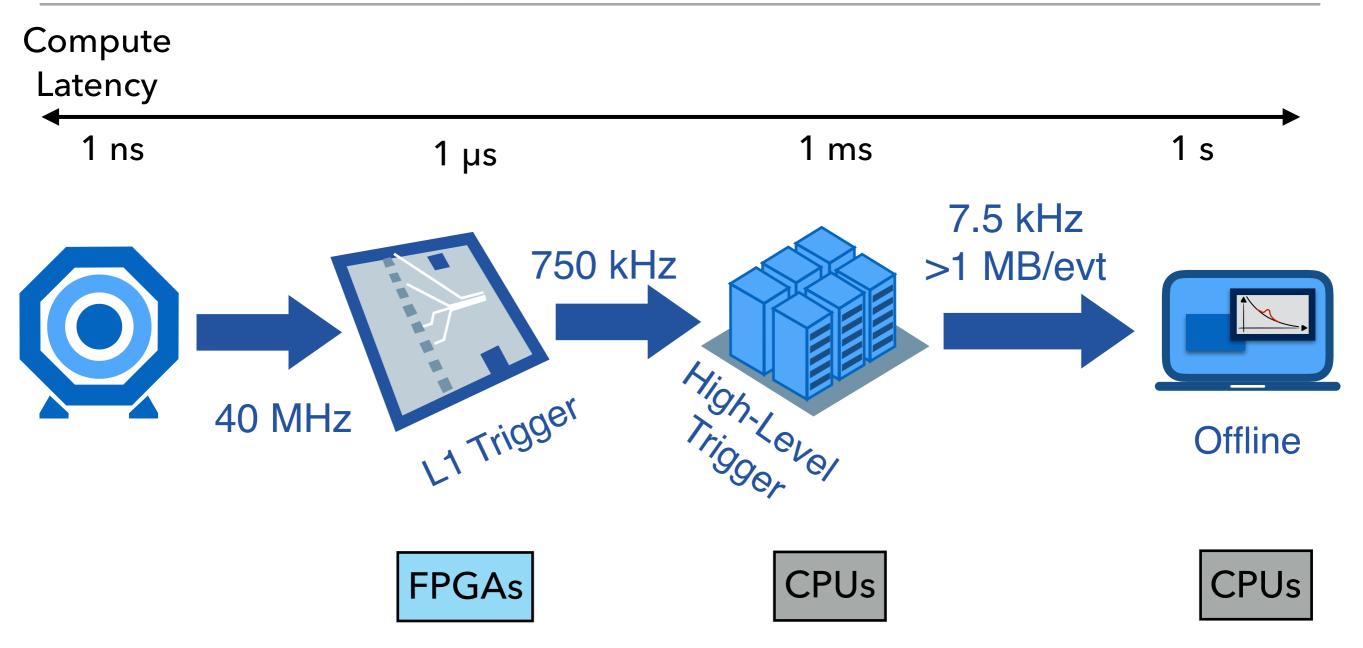
Challenges:

Each collision produces O(10³) particles The detectors have O(10⁸) sensors Extreme data rates of O(100 TB/s)



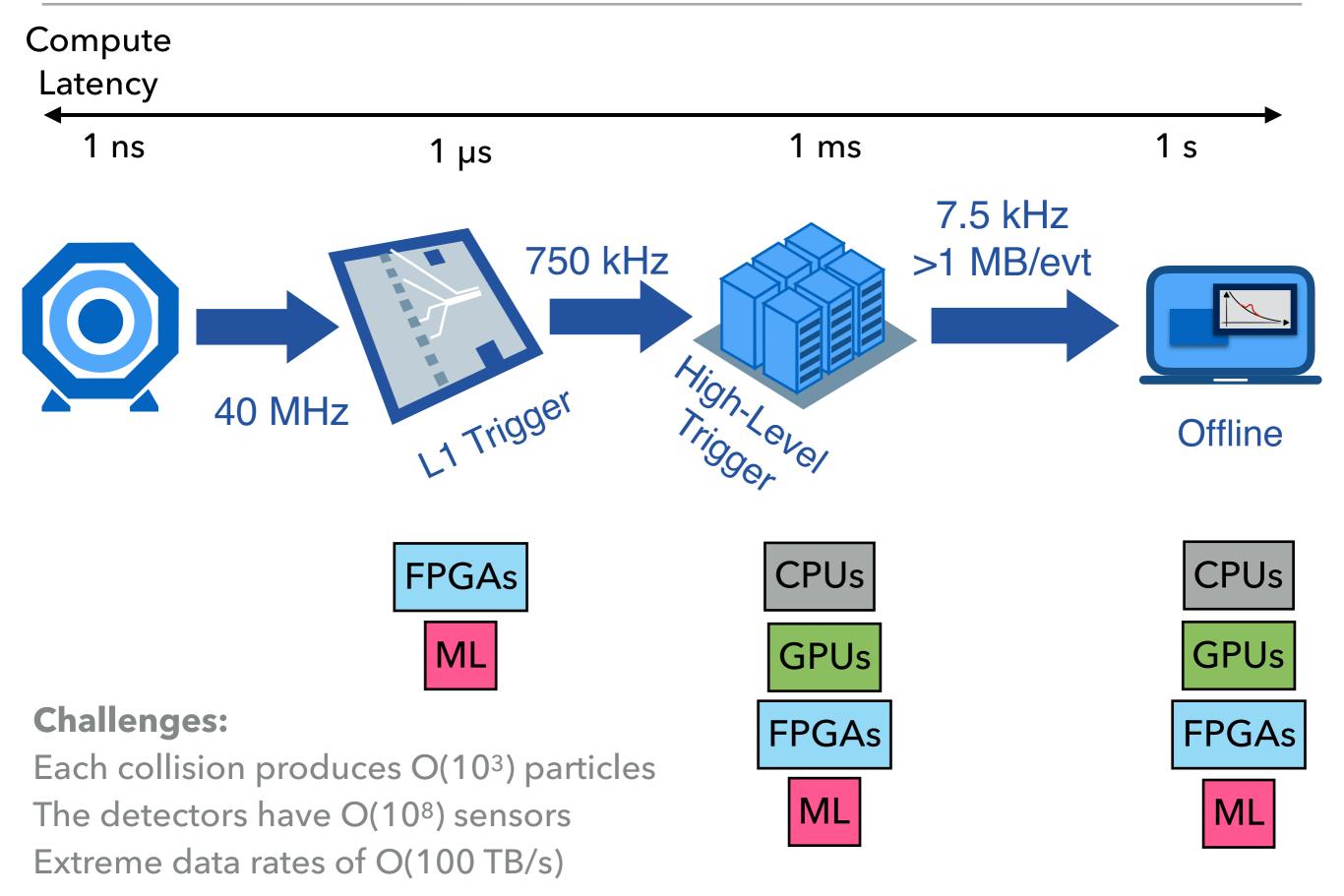
Challenges:

Each collision produces O(10³) particles The detectors have O(10⁸) sensors Extreme data rates of O(100 TB/s)



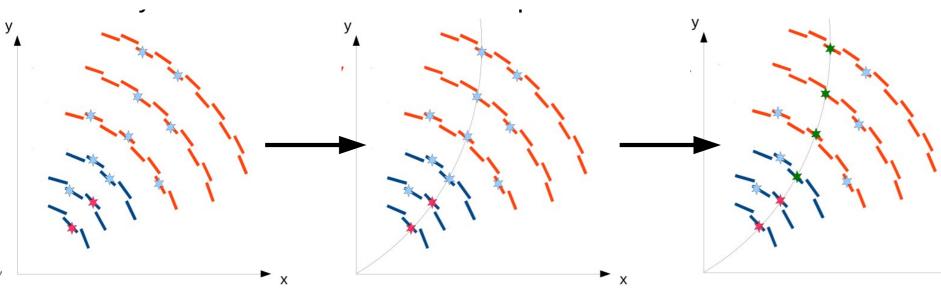
Challenges:

Each collision produces O(10³) particles The detectors have O(10⁸) sensors Extreme data rates of O(100 TB/s)



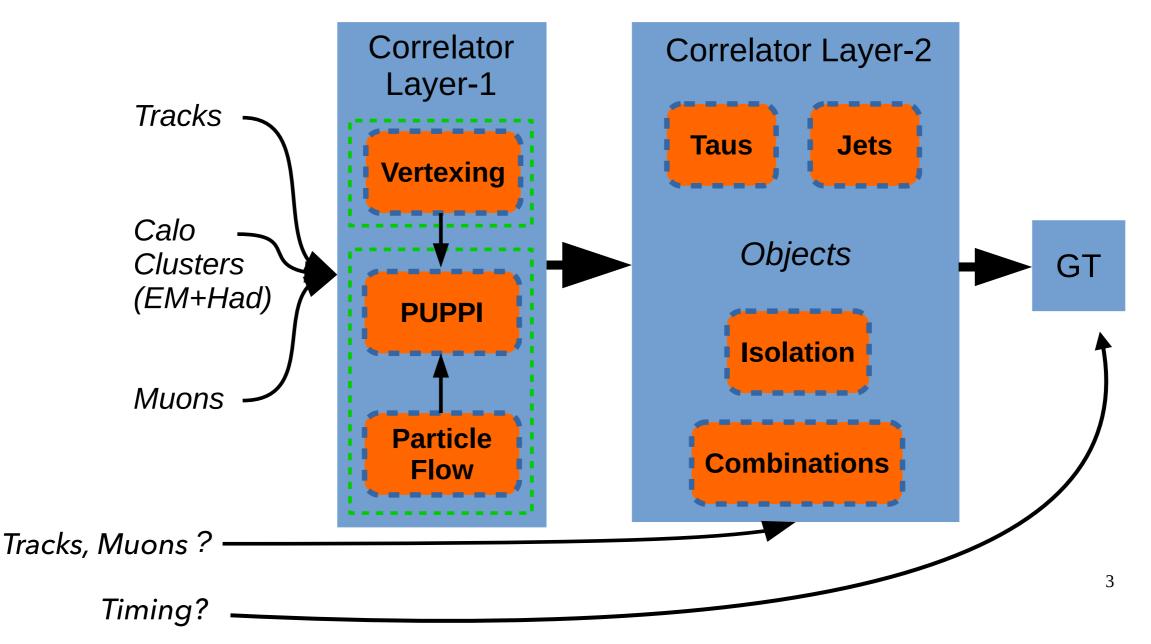
LEVEL-1 TRACK TRIGGER

- Algorithm approach: tracklet and Kalman filter hybrid algorithm written in Vivado HLS to expedite development
 - Tracks are seeded with pairs of stubs in adjacent layers
 - Projections to other layers are calculated (assuming beamline constraint)
 - Full tracks after duplicate removal are inputs to the final track fit (Kalman filter)
- R&D efforts: displaced tracking for long-lived particles, etc.



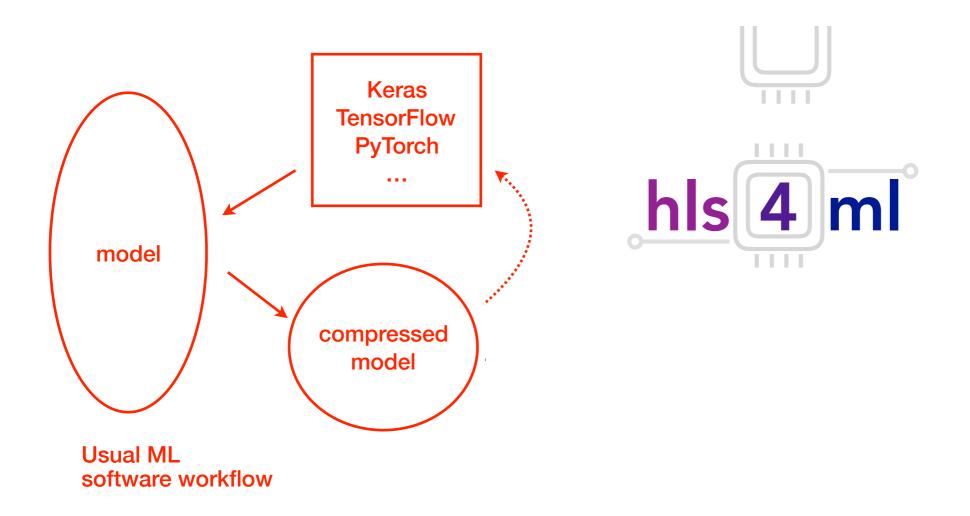
InputRouter
VMRouter
TrackletEngine
TrackletCalculator
ProjectionRouter
MatchEngine
MatchCalculator
DuplicateRemoval
KalmanFilter

- Correlator layer 1 will process pileup mitigated candidates {μ,e,γ,h[±],h⁰,vtx}
- Full correlator trigger must complete all processing & transmit trigger objects {μ,e,γ,τ,j,MET,etc.} to the GT within 2.5 μs



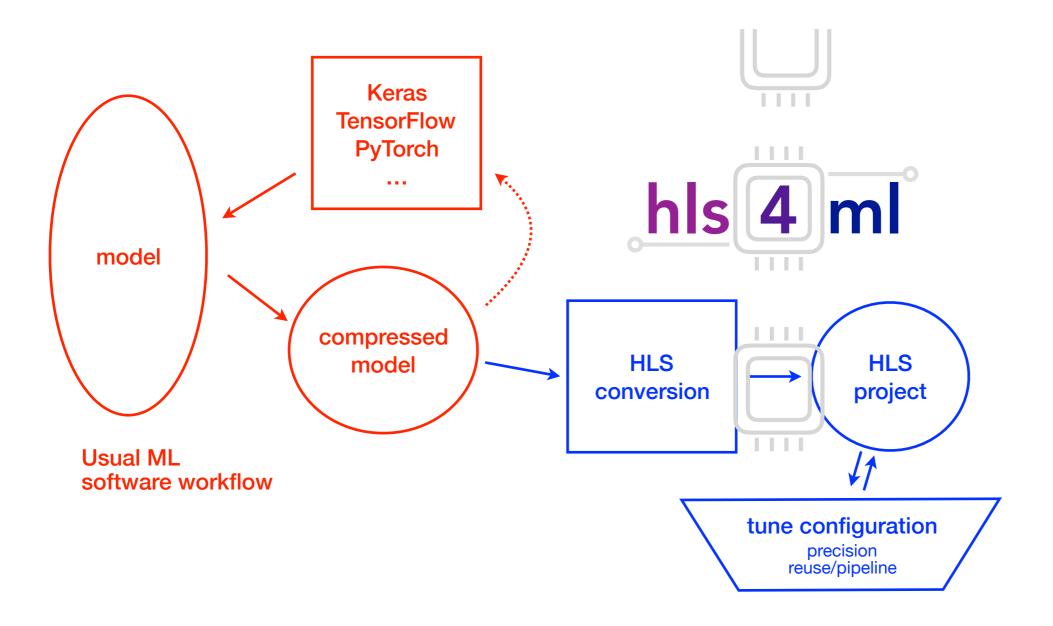
MACHINE LEARNING IN FPGAS WITH HLS4ML JINST 13 (2018) P07027 6

hls4ml for physicists or ML experts to translate ML algorithms into FPGA firmware



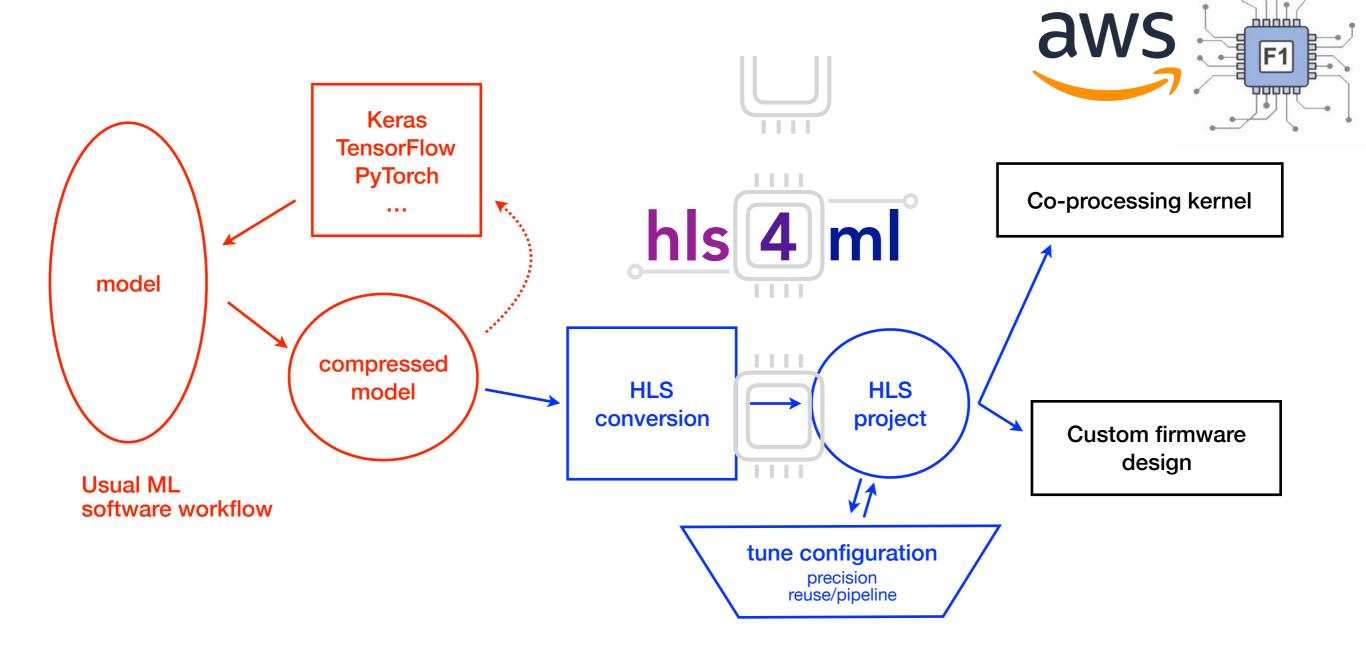
MACHINE LEARNING IN FPGAS WITH HLS4ML JINST 13 (2018) P07027 6

hls4ml for physicists or ML experts to translate ML algorithms into FPGA firmware

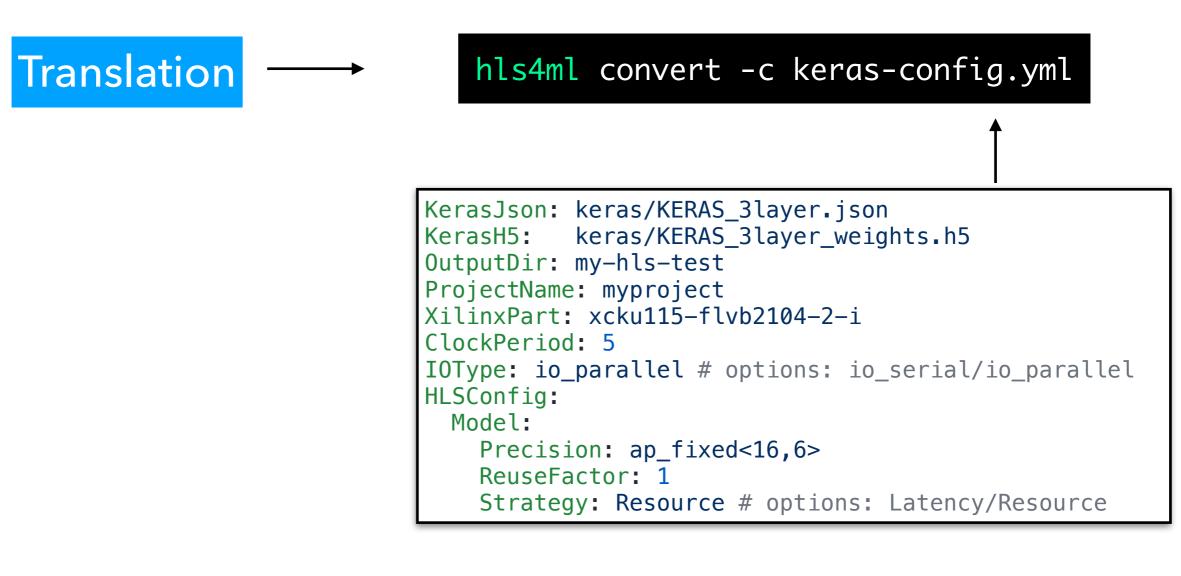


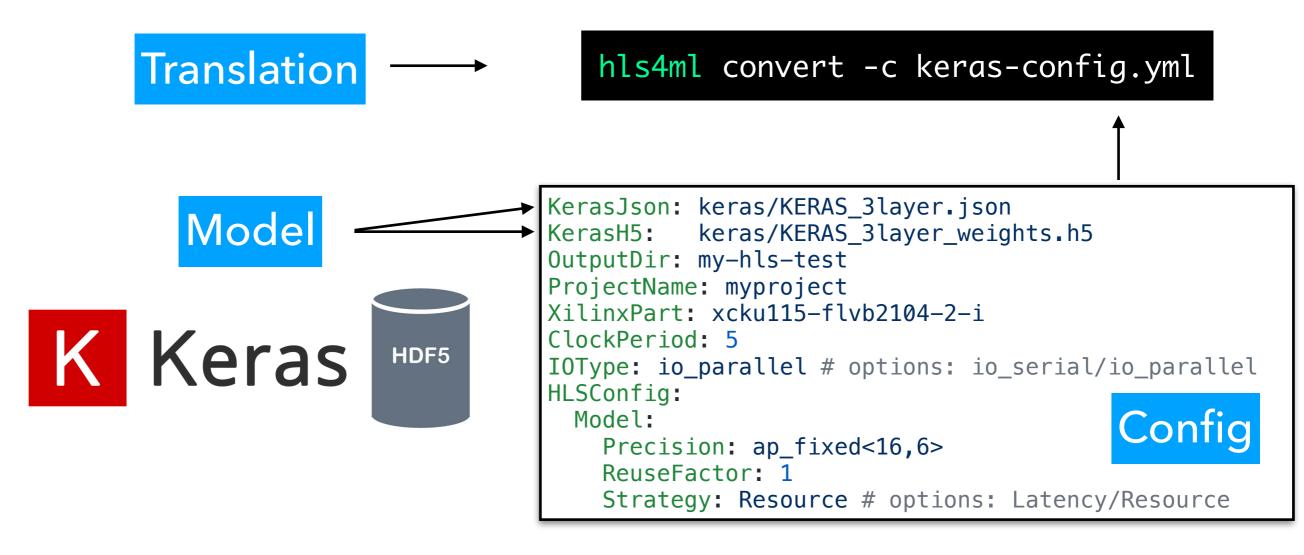
MACHINE LEARNING IN FPGAS WITH HLS4ML JINST 13 (2018) P07027

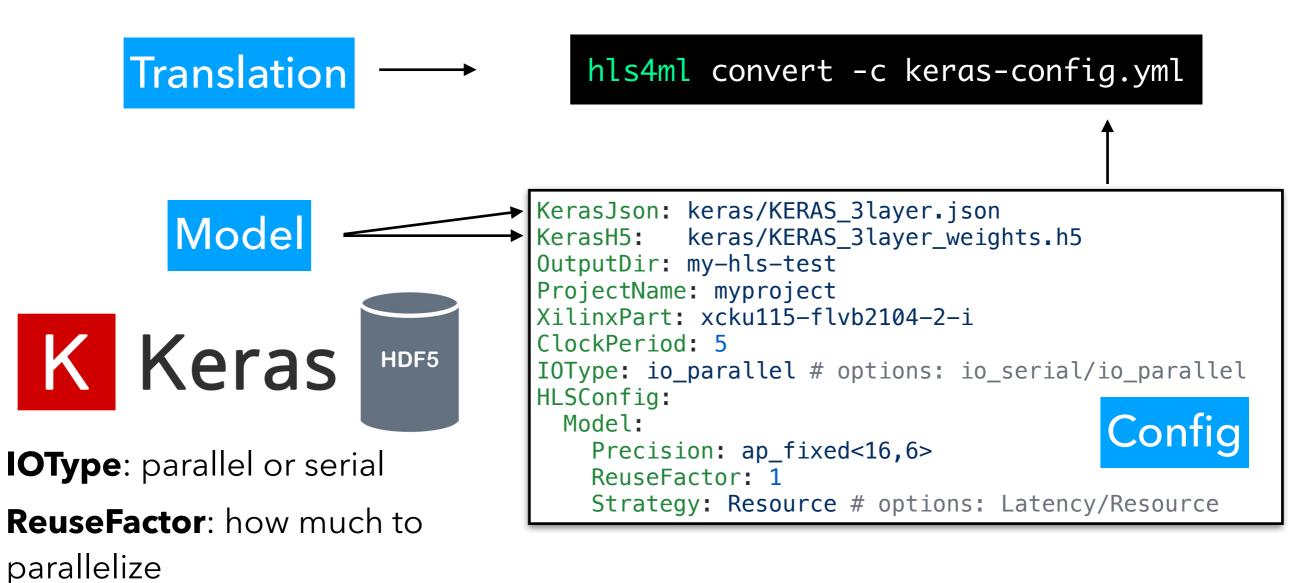
hls4ml for physicists or ML experts to translate **ML algorithms** into FPGA firmware



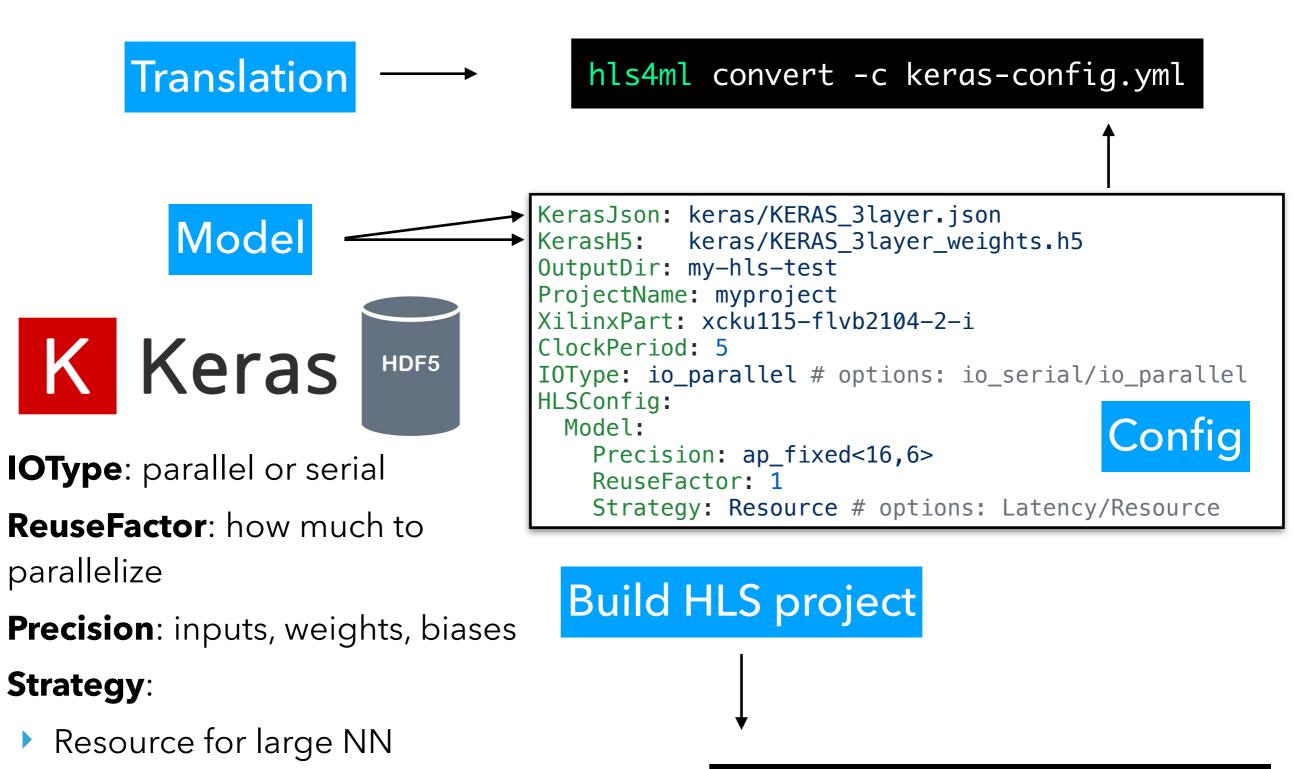
hls4ml convert -c keras-config.yml



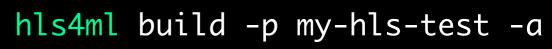




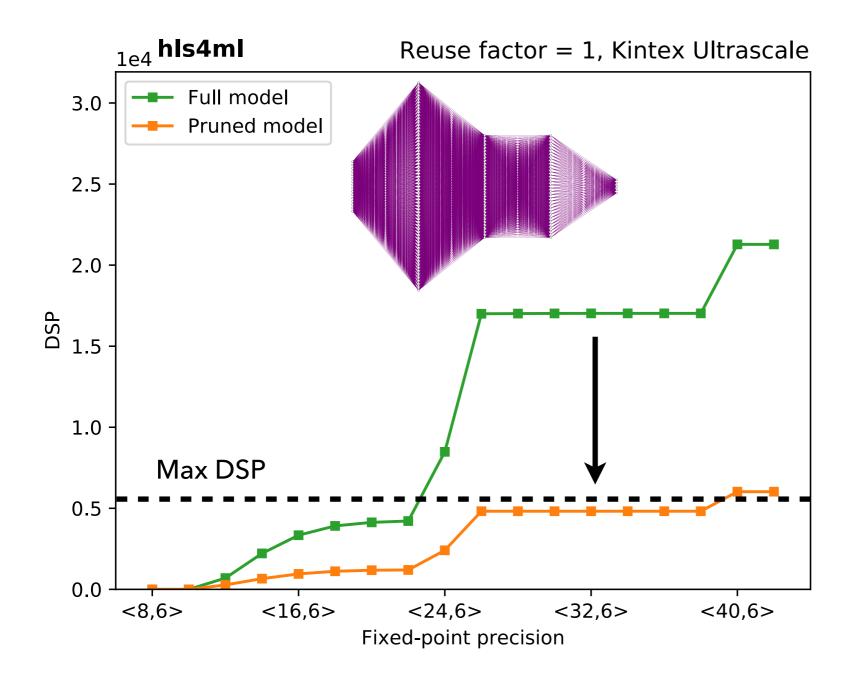
- **Precision**: inputs, weights, biases
- Strategy:
 - Resource for large NN
 - Latency for small NN (fully pipelined)



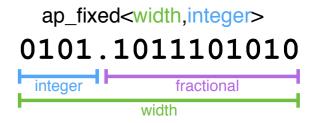
 Latency for small NN (fully pipelined)



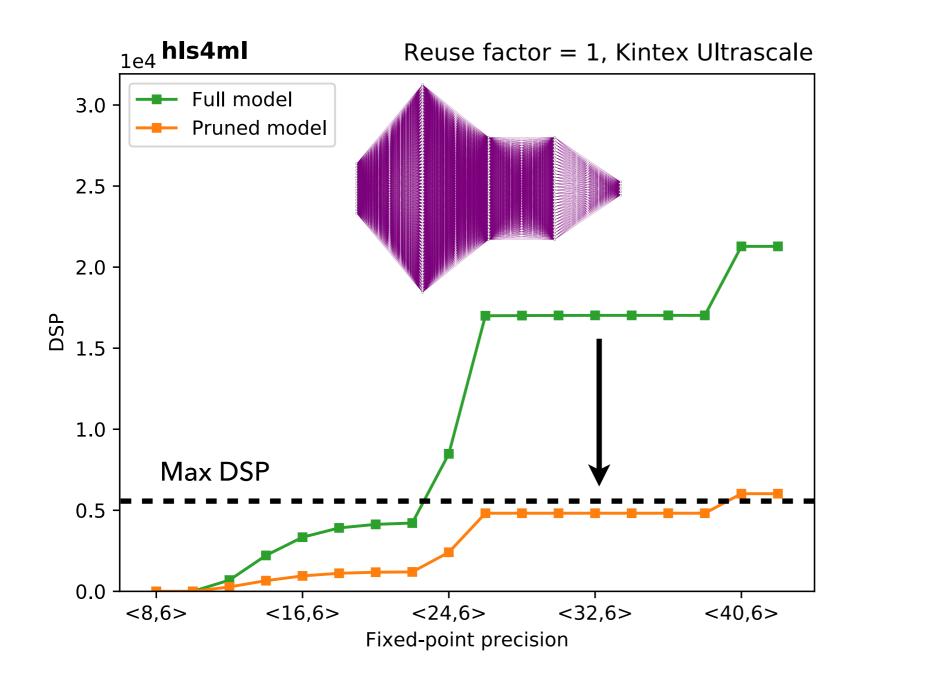
NETWORK TUNING: COMPRESSION & RESOURCES



X0Y4	X1Y4	X2Y4	ХЗҮ4	Х474 .0	X5Y4 D
X0Y3	X1Y3	Х2Ү3	ХЗҮЗ	Х4Ү3	X573
Xovt				X4Y2	Х5Ү2
				X4Y1	X5Y1
XTTY OL			X3MT	X4Y0	X5Y0



NETWORK TUNING: COMPRESSION & RESOURCES



X0Y4	X1Y4	Х274	ХЗҮ4	Х4Ү4 .0	X574 J		
X0Y3	X1Y3	Х2Ү3	X3Y3	Х4Ү3	X5Y3		
X0X				X4Y2	X5Y2		
				(4Y1	(SY1		
0X0			310.	(4Y 0	(570		
ap_fixed <width,integer></width,integer>							

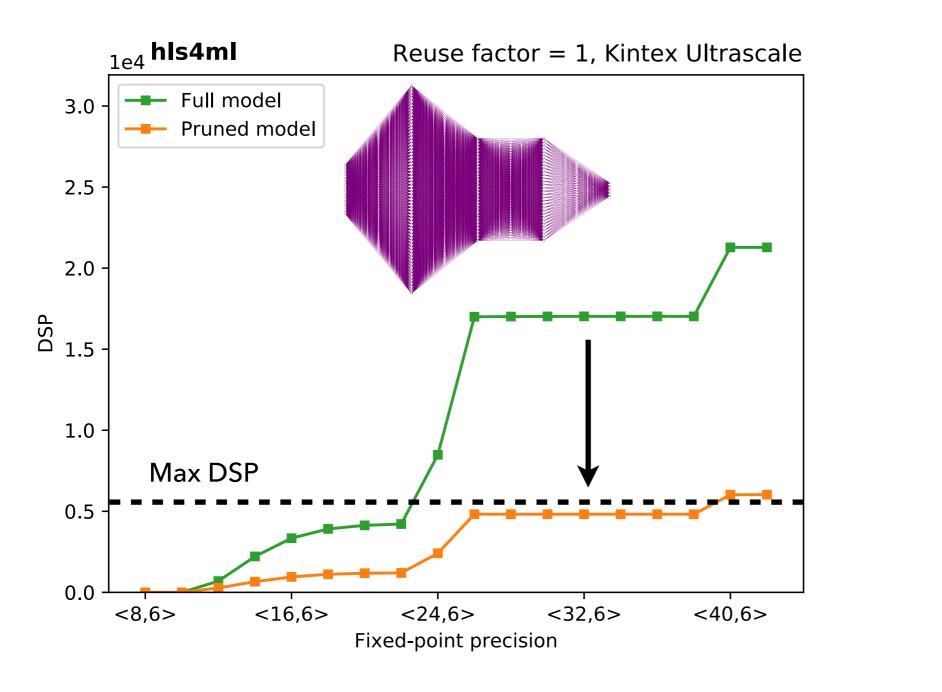
fractional

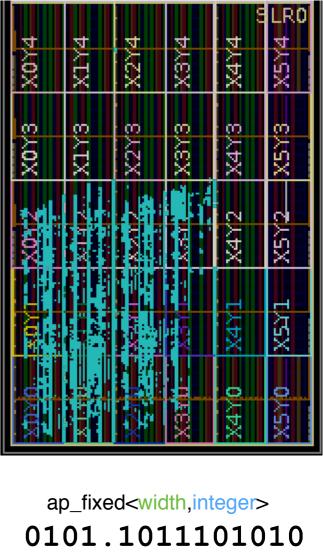
width

integer

Big reduction in DSPs (multipliers) with compression

NETWORK TUNING: COMPRESSION & RESOURCES





fractional

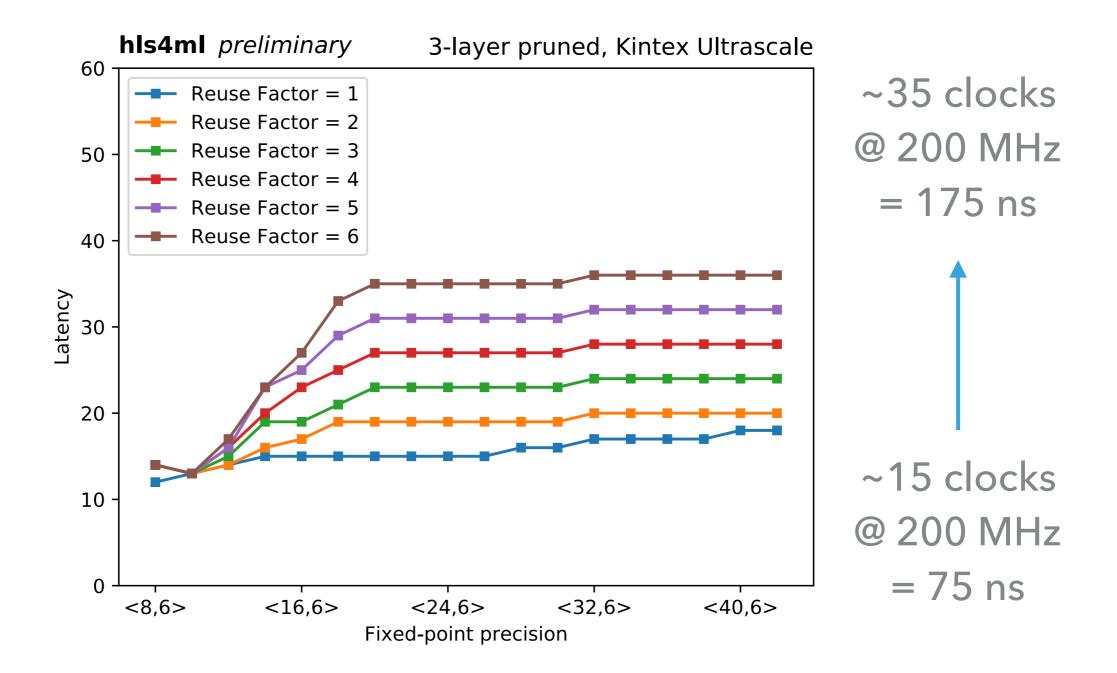
width

integer

- Big reduction in DSPs (multipliers) with compression
- Easily fits on 1 FPGA after compression

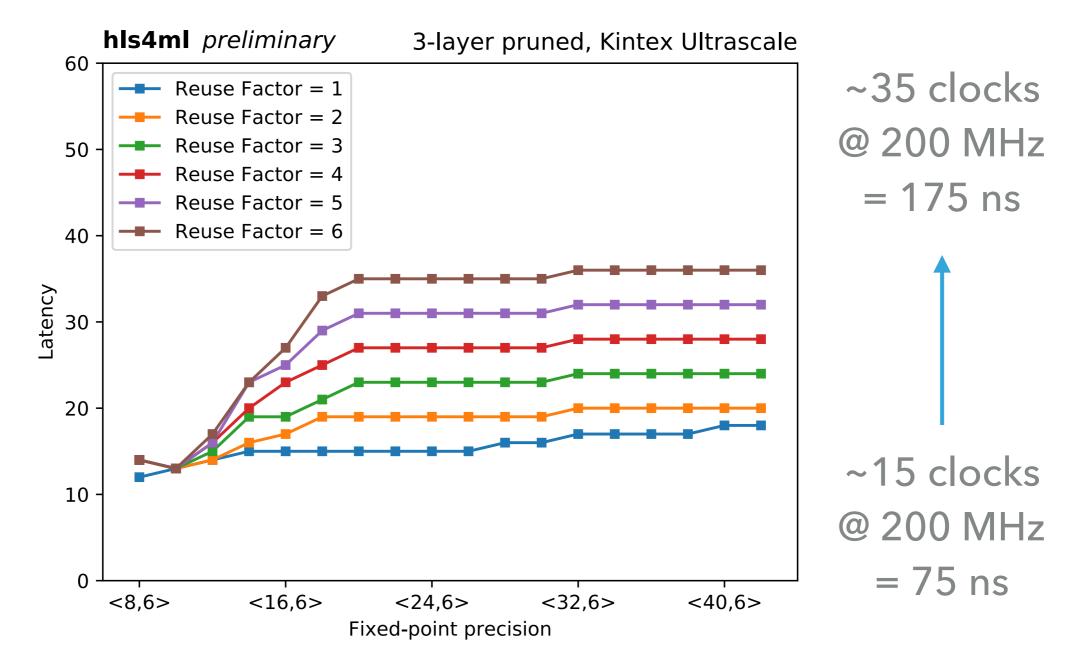
NETWORK TUNING: PARALLELIZATION & TIMING

Increasing reuse factor, increases latency



NETWORK TUNING: PARALLELIZATION & TIMING

Increasing reuse factor, increases latency



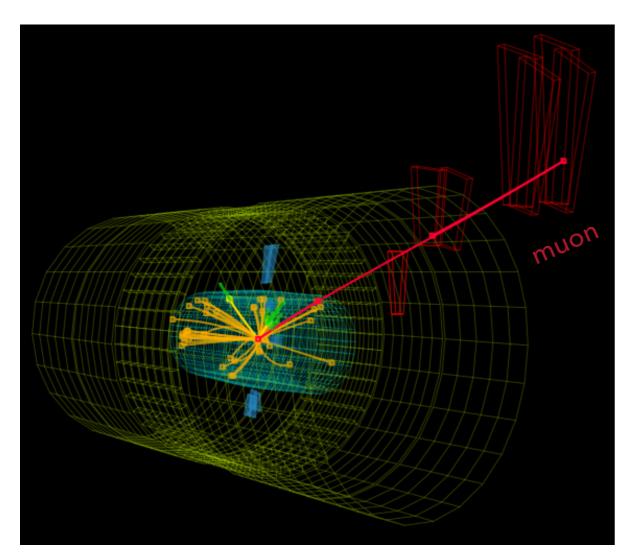
For low-latency, small reuse factor, inference in O(100 ns)! What if we have O(ms)? Can go to **bigger networks!**

Inference of ML algorithms possible in O(100 ns) on 1 FPGA with hls4ml!

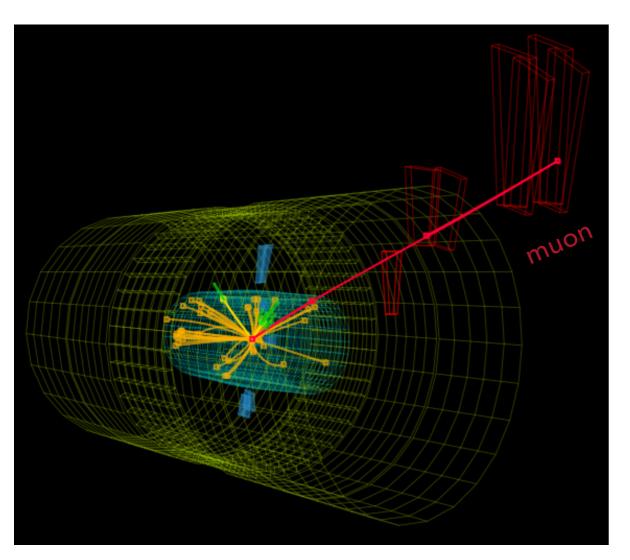
- Inference of ML algorithms possible in O(100 ns) on 1 FPGA with hls4ml!
 - Applications across CMS, ATLAS, DUNE, and accelerator controls:

- Inference of ML algorithms possible in O(100 ns) on 1 FPGA with hls4ml!
 - Applications across CMS, ATLAS, DUNE, and accelerator controls:
 - Muon p_T determination in the CMS endcap with a DNN: runs in 160 ns on an FPGA and reduces the fake muon rate by up to 80%

- Inference of ML algorithms possible in O(100 ns) on 1 FPGA with hls4ml!
 - Applications across CMS, ATLAS, DUNE, and accelerator controls:
 - Muon p_T determination in the CMS endcap with a DNN: runs in 160 ns on an FPGA and reduces the fake muon rate by up to 80%
 - Variational autoencoder for anomaly detection



- Inference of ML algorithms possible in O(100 ns) on 1 FPGA with hls4ml!
 - Applications across CMS, ATLAS, DUNE, and accelerator controls:
 - Muon p_T determination in the CMS endcap with a DNN: runs in 160 ns on an FPGA and reduces the fake muon rate by up to 80%
 - Variational autoencoder for anomaly detection



- Currently supported:
 - Small and large dense NNs
 - Binary and ternary NNs
 - Small 1D/2D CNNs
- Planned support
 - Big 1D/2D CNNs
 - Graph NNs
 - Other HLS/RTL backends

CO-PROCESSORS

Specialized co-processor hardware for machine learning inference

INTEL[®] FPGA ACCELERATION HUB

FPGA Catapult/Brainwave

Delivering FPGA Partner Solutions on AWS

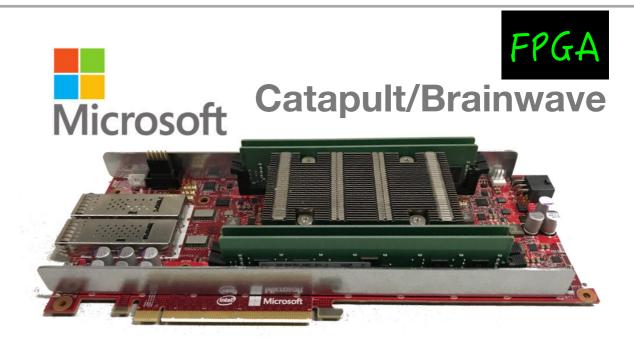
via AWS Marketplace Customers FPGA AWS Marketplace Amazon Amazon FPGA Image Machine (AFI) Image (AMI) AFI is secured, encrypted, dynamically loaded into the FPGA - can't be copied or Amazon EC2 FPGA downloaded

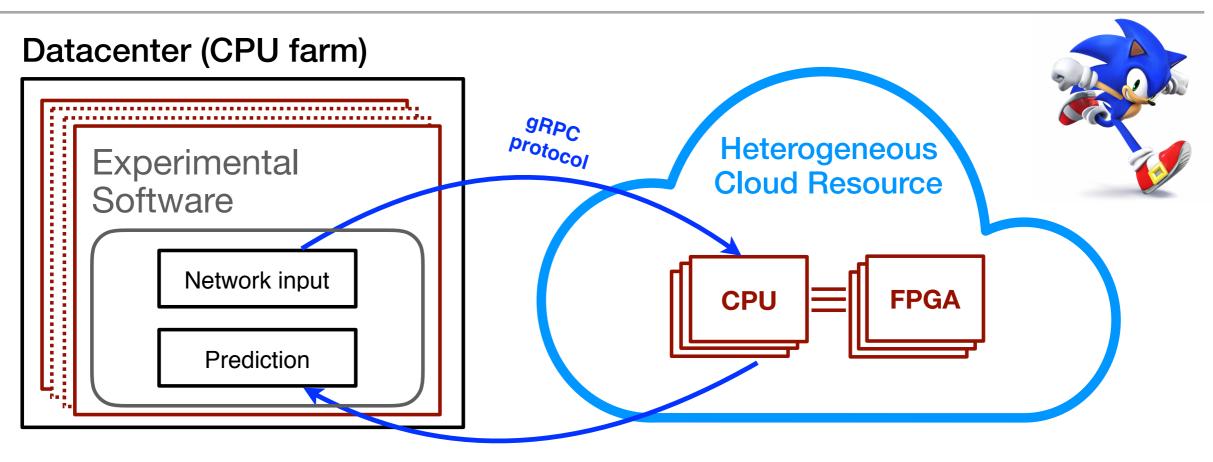
Google Tensor Processing Unit ASIC

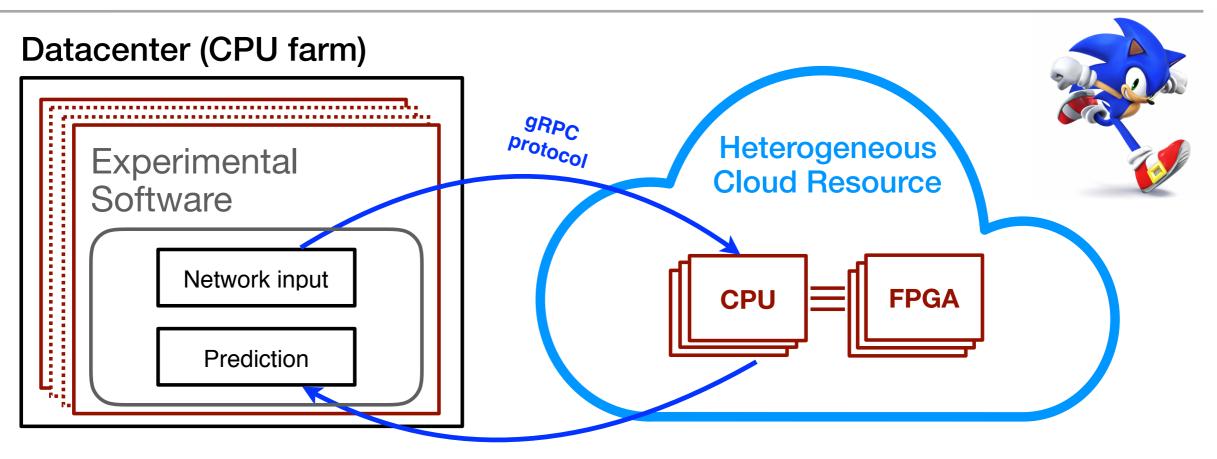
Deployment via Marketplace

CO-PROCESSORS

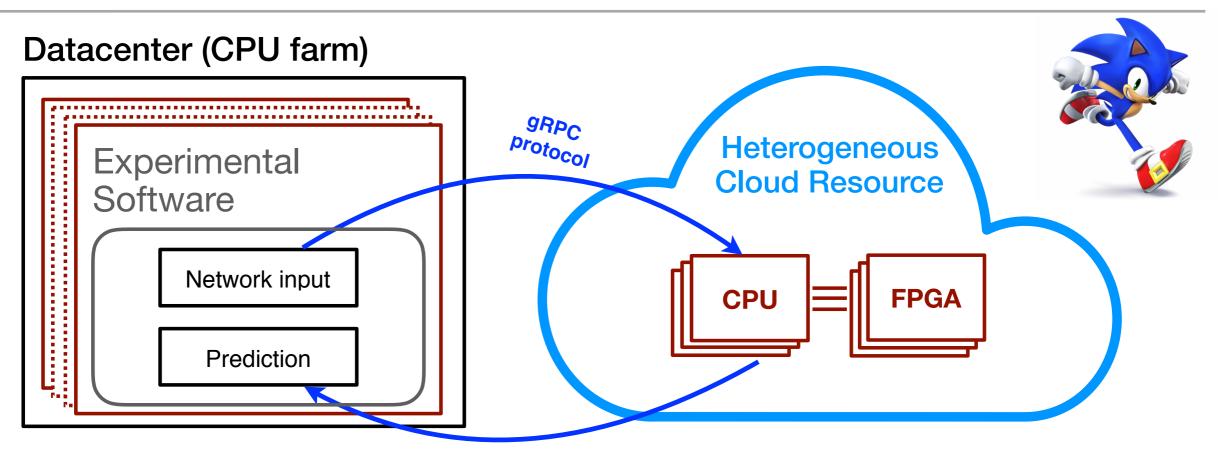
Specialized co-processor hardware for machine learning inference

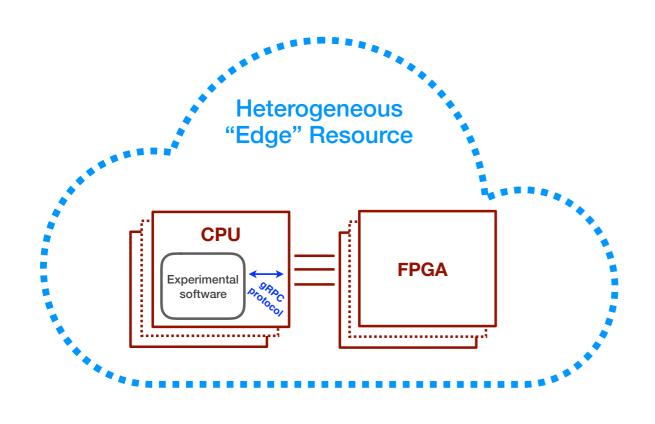






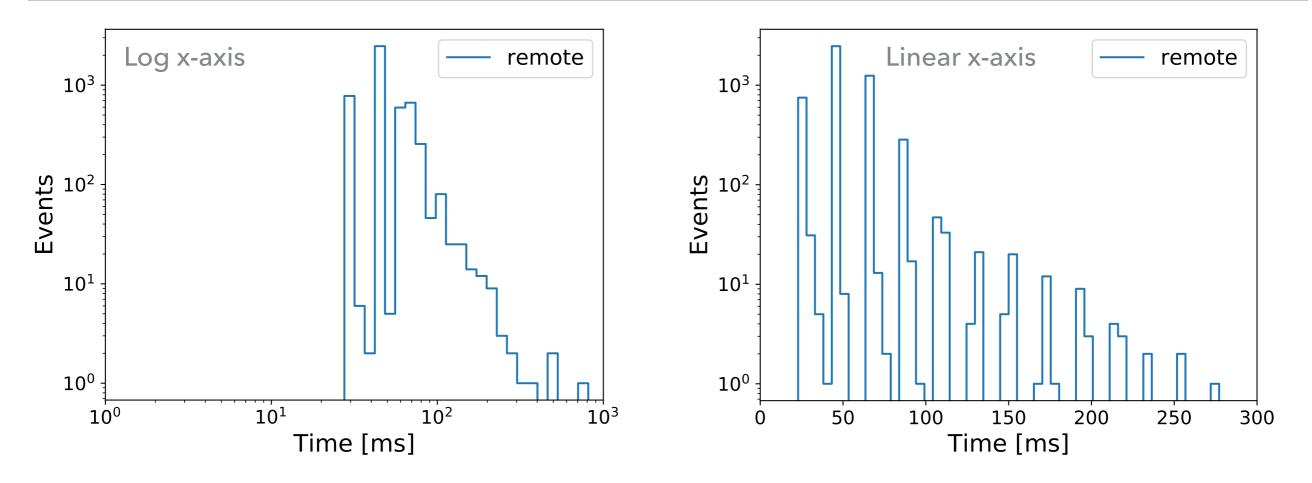
- Services for Optimized Network
 Inference on Coprocessors
 (SONIC)
 - Send jet images from CMSSW to Microsoft Brainwave FPGA



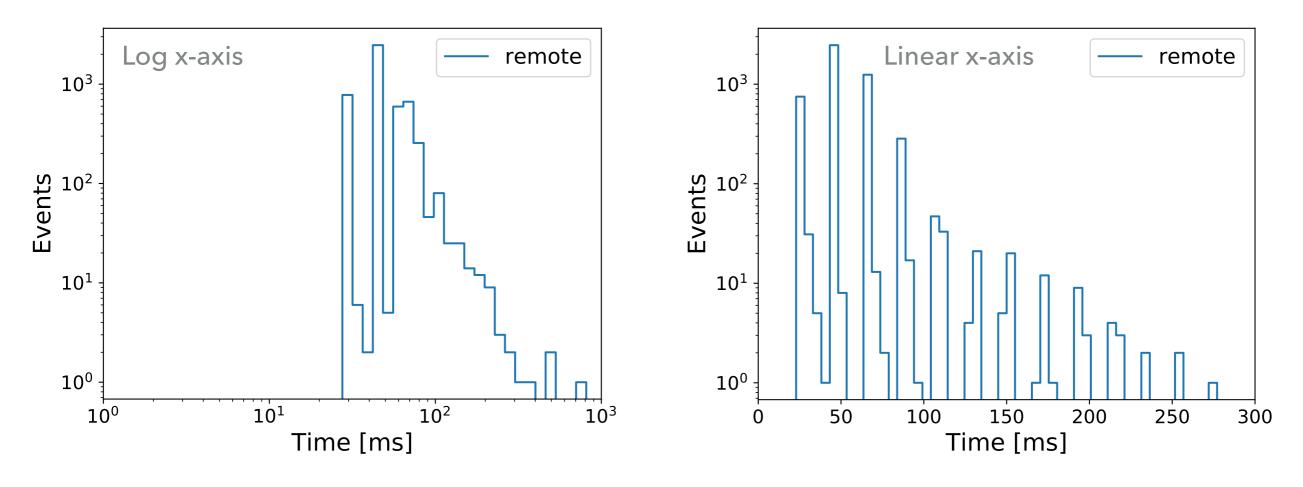


- Services for Optimized Network
 Inference on Coprocessors
 (SONIC)
 - Send jet images from CMSSW to Microsoft Brainwave FPGA
- Two modes: cloud service and on premises

SONIC LATENCY

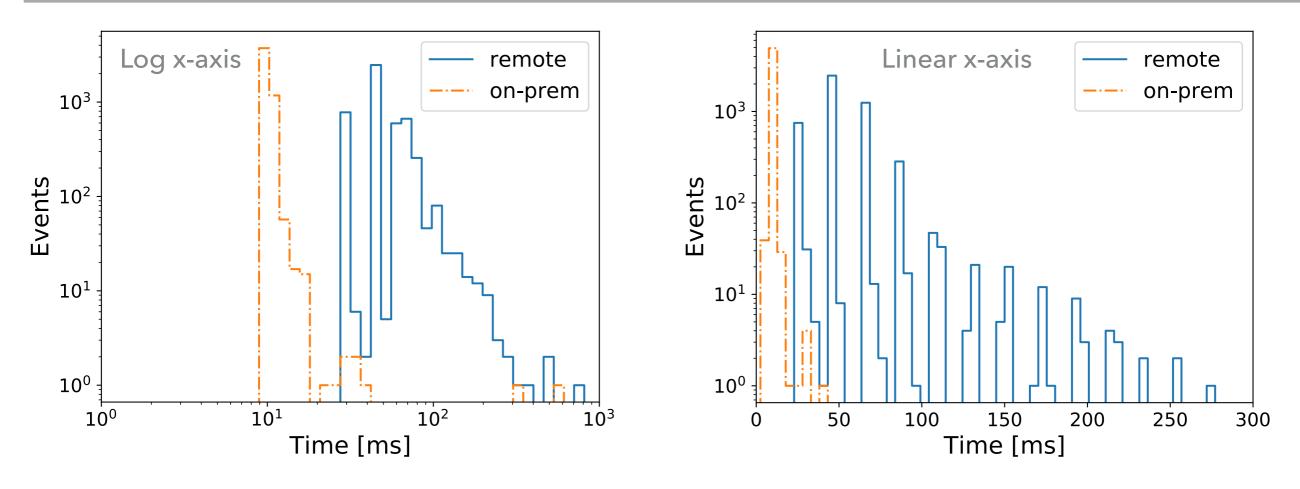


SONIC LATENCY



- Remote: FNAL (IL) to Azure (VA) <i time> = 60 ms
 - Highly dependent on network conditions

SONIC LATENCY

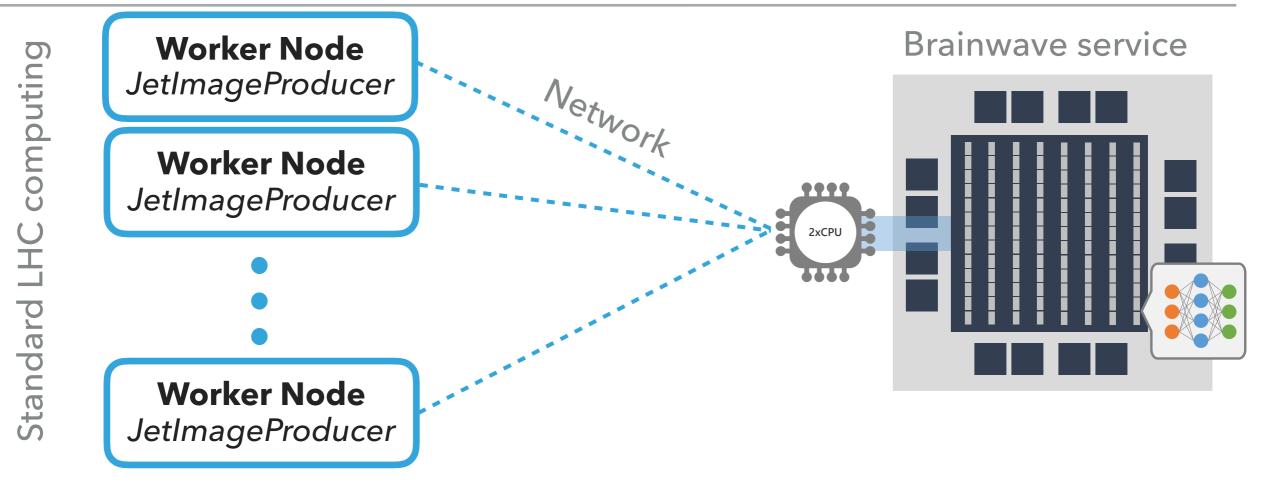


- Remote: FNAL (IL) to Azure (VA) <i time> = 60 ms
 - Highly dependent on network conditions
- On-prem: run CMSSW on Azure

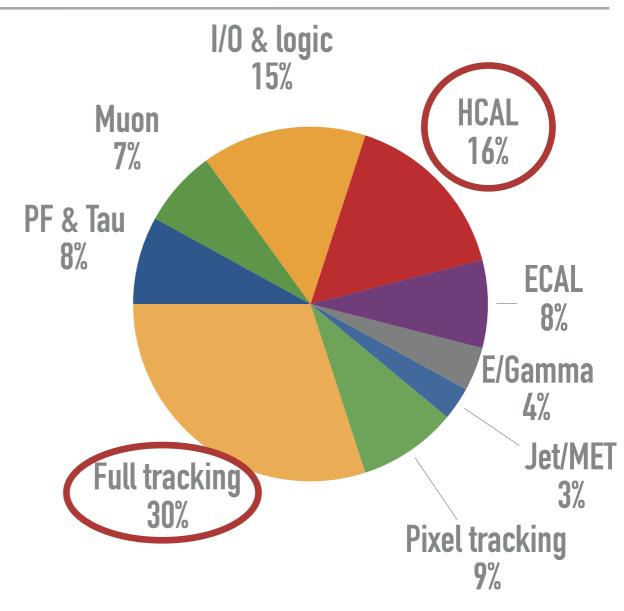
<time> = 10 ms

- on FPGA: 1.8 ms for inference
- Remaining time used for classifying and I/O

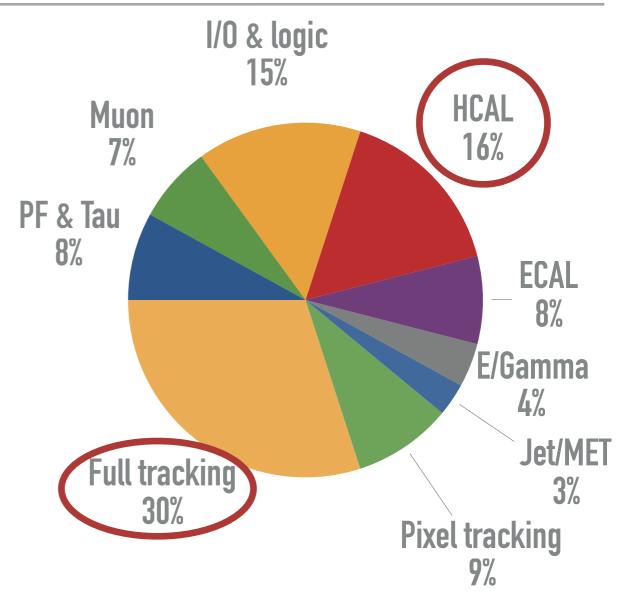
SONIC+BRAINWAVE IN LHC COMPUTING



- Brainwave + SONIC achieves
 - 175×(30×) on-prem (remote) better latency vs. CMS CPU
 - I FPGA service can serve 100s of CPU worker nodes
 - **Competitive throughput** vs. GPU as a service



 HCAL reconstruction and tracking contribute significantly to HLT compute time



- HCAL reconstruction and tracking contribute significantly to HLT compute time
- GPU/FPGA as co-processor can reduce compute time

Inputs

TS0 TS1

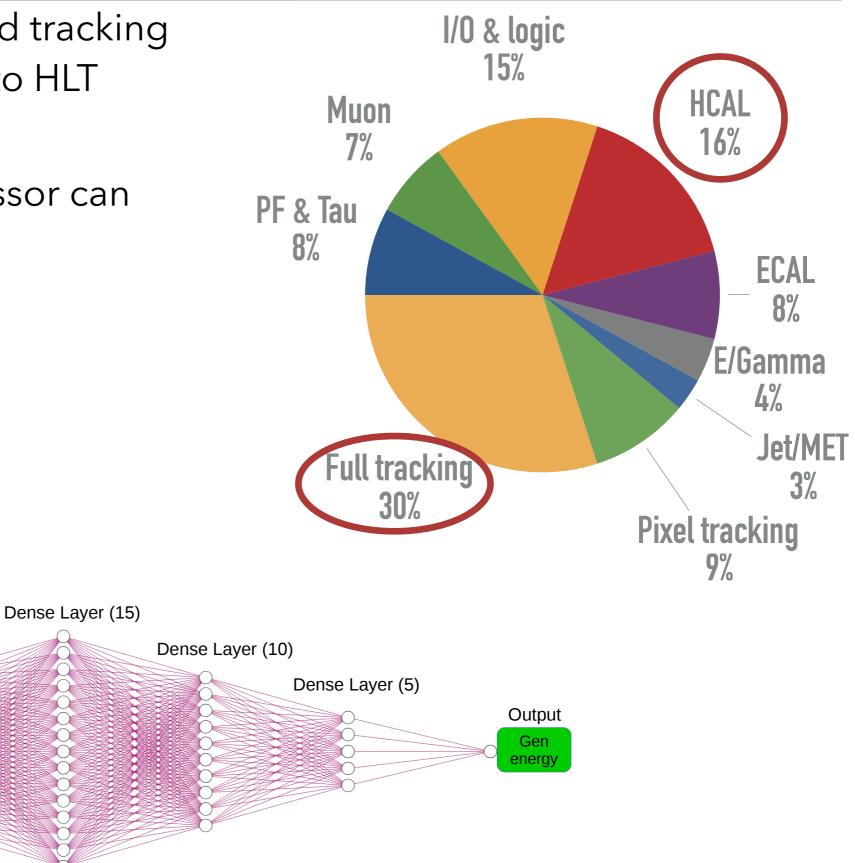
TS2

TS3

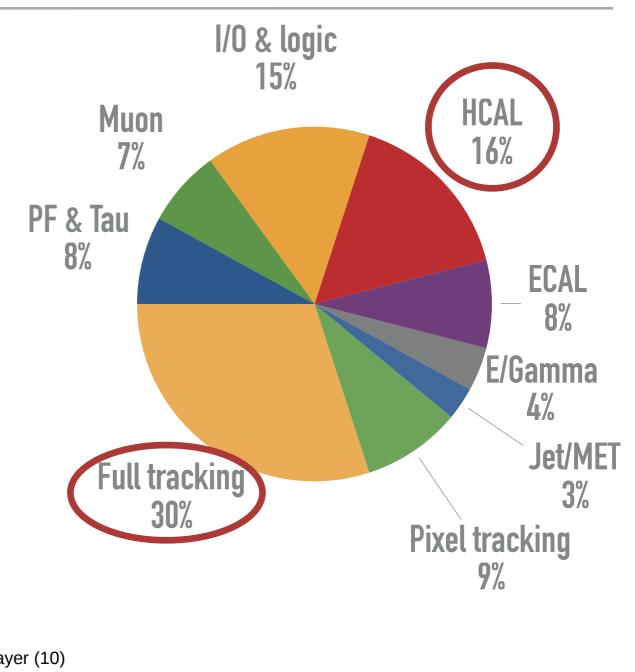
TS4

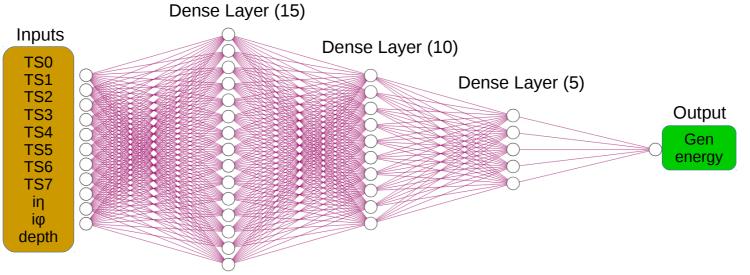
TS5

TS6 TS7 iη iφ depth 0000000

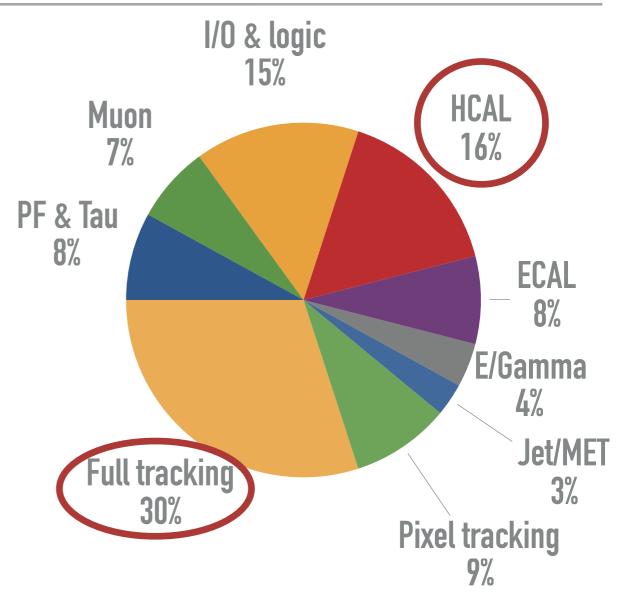


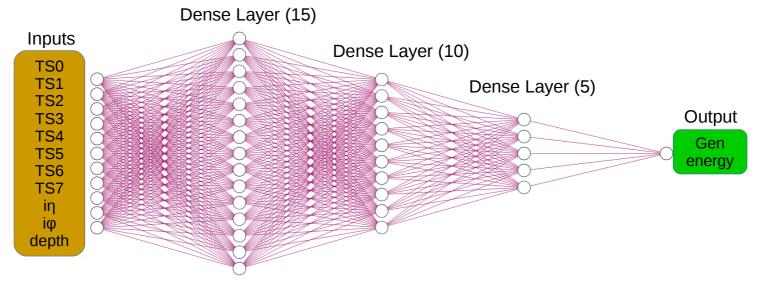
- HCAL reconstruction and tracking contribute significantly to HLT compute time
- GPU/FPGA as co-processor can reduce compute time
 - Patatrack pixel reconstruction on GPUs





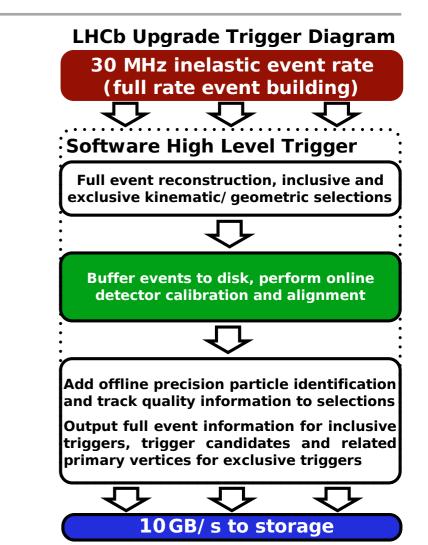
- HCAL reconstruction and tracking contribute significantly to HLT compute time
- GPU/FPGA as co-processor can reduce compute time
 - Patatrack pixel reconstruction on GPUs
 - HCAL reconstruction with ML on GPUs/FPGAs (as a service)

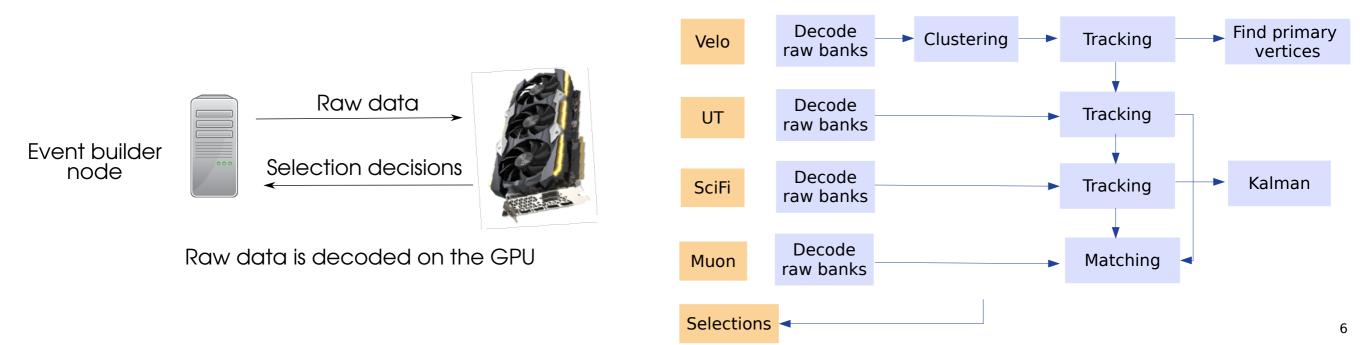




LHCB HIGH-LEVEL TRIGGER ON GPUS

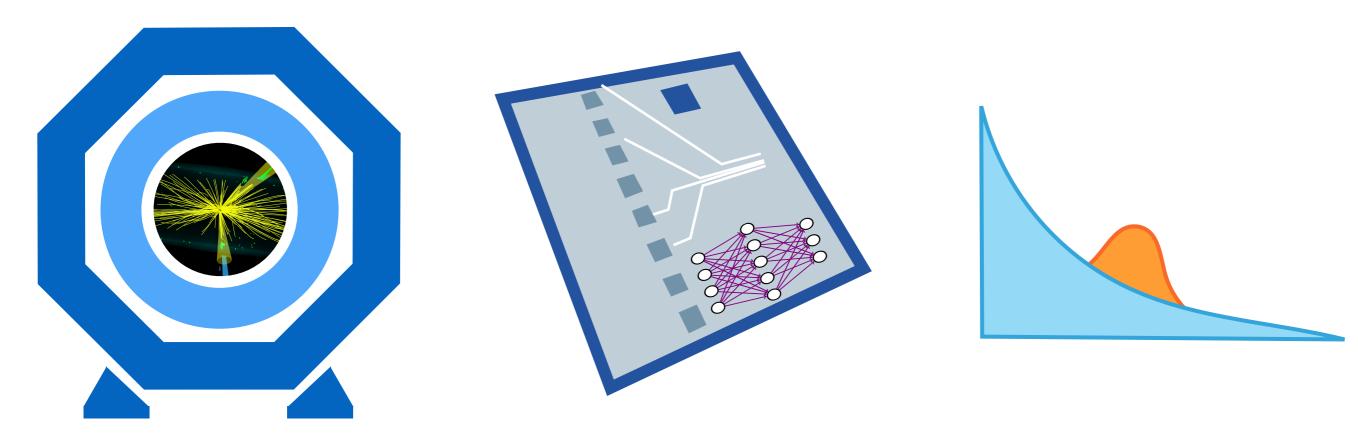
- By 2021, full LHCb trigger chain in software (HLT)
- Run full first stage of HLT (HLT1) on GPUs
- One GPU has to process 30/60 k events/s
- The current sequence of full Velo, primary vertices, full UT, and SciFi decoding runs on an NVIDIA V100 at 112 kHz





SUMMARY AND OUTLOOK

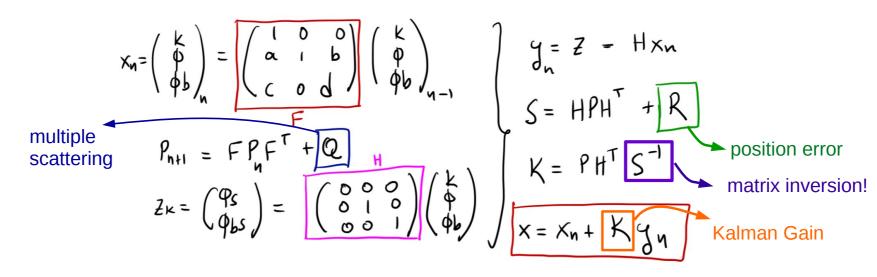
- > Particle physics experiments face **extreme trigger challenges** in the coming years
- Exploiting new algorithms, new hardware, and machine learning will be key to the success of next-gen experiments
- Open questions:
 - With more sophisticated algorithms at earlier trigger, how do we ensure performance/safety? backup triggers?
 - > What community tools do we need to deploy ML at the trigger?
 - > Which co-processors are best suited to which tasks for the high-level trigger?
 - How do we incorporate timing information at the trigger level?
 - What are the physics use-cases for L1 scouting at 40 MHz?
 - What can we do with the new trigger hardware capabilities which we aren't thinking about?
 - L1 gives us a fundamental limitation but is there more we can exploit at the HLT?
 - Can we make a (realistic) wish-list for triggerable characteristics of events?



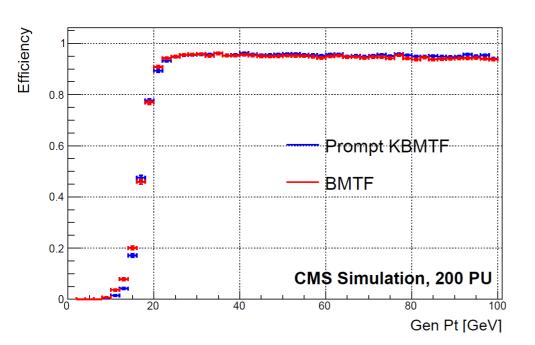
JAVIER DUARTE (UCSD) OCTOBER 23, 2019 WEST COAST LHC JAMBOREE, SLAC

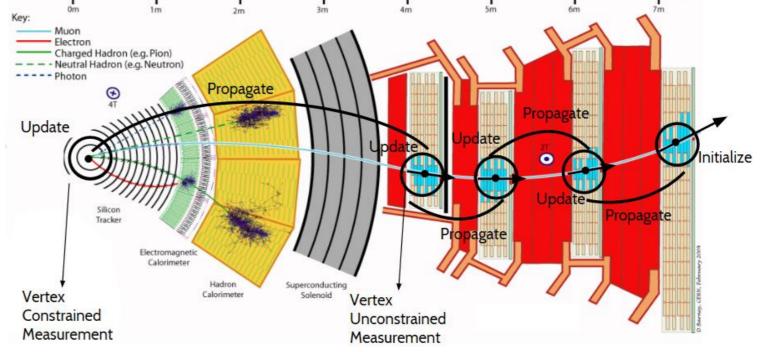
BACKUP

MUON RECONSTRUCTION WITH KALMAN FILTER

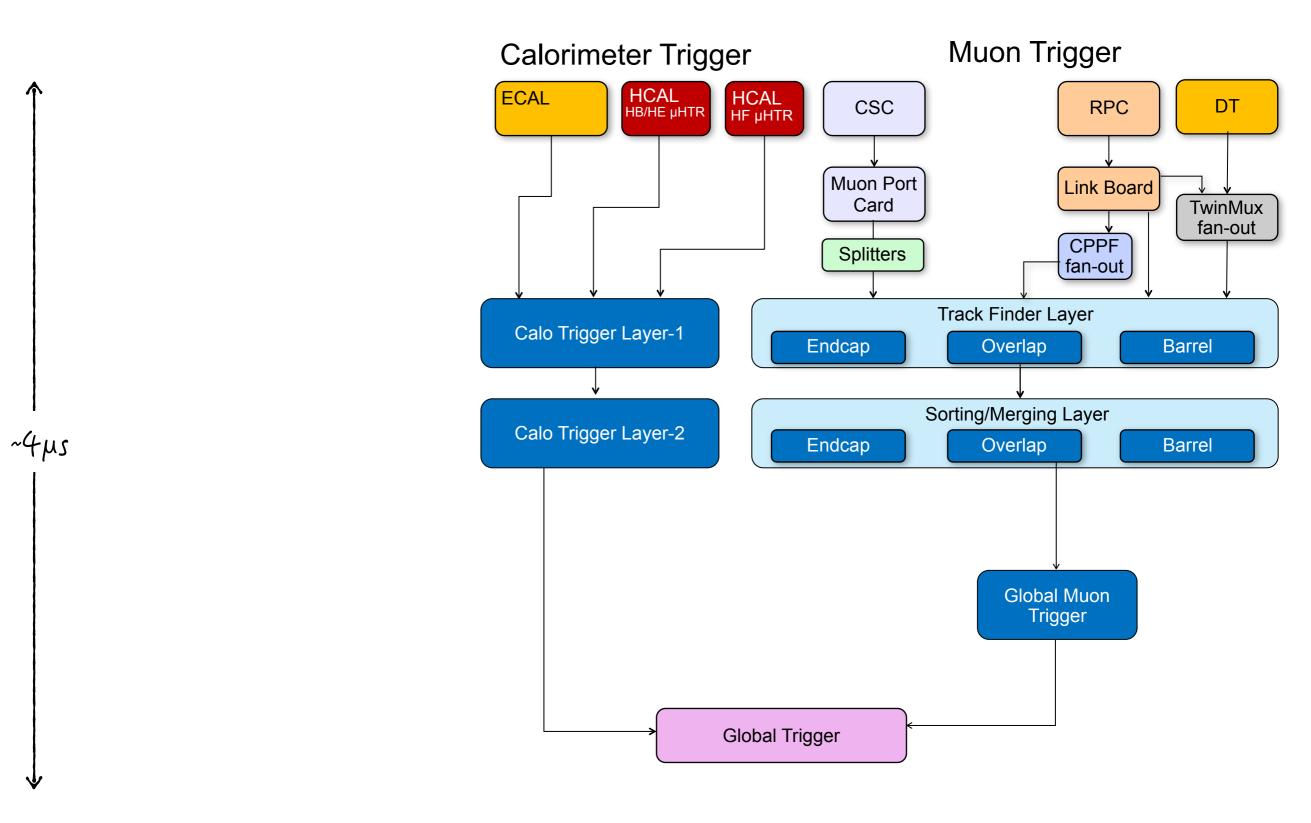


- Phase-2 : improved reconstruction using a Kalman filter
 - Iterative outer-inner tracking to reconstruct tracks and assign track p_T (as offline)
- Both PV constrained and unconstrained tracks: displaced standalone muons





UPGRADING THE LEVEL-1 TRIGGER (BEFORE)



UPGRADING THE LEVEL-1 TRIGGER (AFTER)

More and better information available in the Level-1 trigger!

What can we do with it?

21

