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NEW IDEAS & TECHNOLOGIES IN
TRIGGER FOR HL-LHC (AND RUN 3)
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NEW IDEAS AND TECHNOLOGIES FOR TRIGGER 2

FPGA
“programmable hardware”

Modern FPGAs with large amounts of
embedded components that perform

multiplication (DSPs), apply logical =
functions (LUTs), or store memory (BRAM) \'

High level synthesis to more easily program FPGAs
Sophisticated algorithms
Machine learning

GPUs or FPGAs or ASICs as co-processors for software trigger
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LEVEL-1 TRACK TRIGGER

» Algorithm approach: tracklet and Kalman filter hybrid

alg

orithm written in Vivado HLS to expedite

development

» Tracks are seeded with pairs of stubs in adjacent

ayers

Projections to other layers are calculated (assuming
beamline constraint)

Full tracks after duplicate removal are inputs to the

final track fit (Kalman filter)

» R&D efforts: displaced tracking for long-lived
particles, etc.
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InputRouter
VMRouter
TrackletEngine
TrackletCalculator
ProjectionRouter
MatchEngine

MatchCalculator

KalmanFilter



CORRELATOR TRIGGER

» Correlator layer 1 will process pileup mitigated candidates
{p.e,y,h=ho vix]

» Full correlator trigger must complete all processing & transmit
trigger objects {y,e,y,T,j, MET,etc.} to the GT within 2.5 ps

Tracks

Calo
Clusters
(EM+Had)

Muons

Tracks, Muons ?

Timing?
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» hls4ml for physicists or ML experts to translate ML algorithms
into FPGA firmware
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» hls4ml for physicists or ML experts to translate ML algorithms
into FPGA firmware

AWS | =
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N >) . F
Keras ._ﬂ TH l
TensorFlow
PyTorch
Co-processing kernel

<=1 hls 4 ml

compressed
model — HLS _
conversion _
Custom firmware
design
Usual ML

software workflow Jf

tune configuration
precision
reuse/pipeline
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hls4ml convert -c keras-config.yml

Translation Eeesse
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Keras K&

» 10Type: parallel or serial

» ReuseFactor: how much to
parallelize

> Precision: inputs, weights, biases
» Strategy:
» Resource for large NN

» Latency for small NN
(fully pipelined)

T

KerasJson: keras/KERAS_3layer.json

KerasH5: keras/KERAS_3layer_weights.h5

OQutputDir: my-hls-test

ProjectName: myproject

XilinxPart: xckull5-flvb2104-2-i

ClockPeriod: 5

I0Type: io_parallel # options: io_serial/io_parallel

HLSConfig:
Model: :
Precision: ap_fixed<16,6> COnflg

ReuseFactor: 1
Strategy: Resource # options: Latency/Resource

Build HLS project

|

hls4ml build -p my-hls-test -a
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1eq his4ml Reuse factor = 1, Kintex Ultrascale
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1eq his4ml Reuse factor = 1, Kintex Ultrascale
3.04 —®— Full model
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Fixed-point precision

" integer fractional

» Big reduction in DSPs (multipliers) with compression

» Easily fits on 1 FPGA after compression



NETWORK TUNING: PARALLELIZATION & TIMING

» Increasing reuse factor, increases latency

hisdml preliminary 3-layer pruned, Kintex Ultrascale
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NETWORK TUNING: PARALLELIZATION & TIMING

» Increasing reuse factor, increases latency

hisdml preliminary 3-layer pruned, Kintex Ultrascale
60
—=— Reuse Factor = 1 ~35 CIOCkS
—#— Reuse Factor = 2
50 4 —®— Reuse Factor = 3 @ 200 MHZ
—a— Reuse Factor =14
—=— Reuse Factor = 5 =1 75 ns
40 4 —®— Reuse Factor = 6
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. ~15 clocks
@ 200 MHz
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Fixed-point precision
For low-latency, small reuse factor, inference in O(100 ns)!
What if we have O(ms)? Can go to bigger networks!
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Inference of ML algorithms possible in O(100 ns) on 1 FPGA with hls4ml!
Applications across CMS, ATLAS, DUNE, and accelerator controls:

Muon pt determination in the CMS endcap with a DNN:
runs in 160 ns on an FPGA and reduces the fake muon rate by
up to 80%

Variational autoencoder for anomaly detection

Currently supported:
Small and large dense NNs
Binary and ternary NNs
Small 1D/2D CNNs
Planned support
Big 1D/2D CNNs
Graph NNs
Other HLS/RTL backends




CO-PROCESSORS

Specialized co-processor hardware
for machine learning inference
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Catapult/Brainwave

Delivering FPGA Partner Solutions on AWS

via AWS Marketplace s FPGA
ustomers
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Specialized co-processor hardware
for machine learning inference

. -
Microsoft Catapult/Brainwave
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arXiv:1204.08986 12

Heterogeneous
Cloud Resource

» Services for Optimized Network

Inference on Coprocessors

(SONIC)

» Send jet images from CMSSW
to Microsoft Brainwave FPGA


https://github.com/hls-fpga-machine-learning/SonicCMS
https://github.com/hls-fpga-machine-learning/SonicCMS
https://github.com/hls-fpga-machine-learning/SonicCMS
https://arxiv.org/abs/1904.08986
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» Services for Optimized Network

Inference on Coprocessors
LR (SONIC)
~ » Send jet images from CMSSW
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» Remote: FNAL (IL) to Azure (VA) ime>» = 60 ms

» Highly dependent on network conditions
» On-prem: run CMSSW on Azure time> =10 ms
» on FPGA: 1.8 ms for inference

» Remaining time used for classifying and I/0


https://arxiv.org/abs/1904.08986

SONIC+BRAINWAVE IN LHC COMPUTING arXivi1904.08986 14

Worker Node Brainwave service
JetlmageProducer | "-.._

Worker Node .
JetlmageProducer | """ --all

®
®
®
Worker Node |.--~
JetlmageProducer

» Brainwave + SONIC achieves

Standard LHC computing

» 175% (30x%) on-prem (remote) better latency
vs. CMS CPU

» 1 FPGA service can serve 100s of CPU worker nodes

» Competitive throughput vs. GPU as a service


https://arxiv.org/abs/1904.08986
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» HCAL reconstruction and tracking /0 & logic
contrlbute.5|gn|f|cant|y to HLT oo HCAL
compute time 79 16

» GPU/FPGA as co-processor can PF 2 Tau

te ti o
reduce compute time 87 ECAL
» Patatrack pixel reconstruction on 8
GPUs E/Gamma
. . b,
» HCAL truct th ML
CAL reconstruction wi on \JetIMET

GPUs/FPGAs (as a service) %

Pixel tracking
97

Dense Layer (15)




LHCB HIGH-LEVEL TRIGGER ON GPUS 16

LHCb Upgrade Trigger Diagram
30 MHz inelastic event rate

» By 2021, tull LHCDb trigger chain in software {full rate event building)

( H LT) §Software High Level Trigger

Full event reconstruction, inclusive and
exclusive kinematic/ geometric selections

» Run full first stage of HLT (HLT1) on GPUs g O

Buffer events to disk, perform online

» One GPU has to process 30/60 k events/s | e sereiin st

, ; S :
} Th e Cu rre nt Se q u e n Ce Of fu | | Ve | O[ p rl m a ry :\dd offline precision particle identificatio:

and track quality information to selections
I I I | Output full event information for inclusive

vertices, full UT, and SciFi decoding runs on  [gusu i event information for inciusive

primary vertices for exclusive triggers

an NVIDIA V100 at 112 kHz v v v

Decode > : > : » Find primary
Velo raw banks HEEEING lirEielding vertices

Raw data Decode : |

> uT T » Tracking
Event bulider Selection decisions ¢
node Decode : >
< o — Kalman
il SciFi raw banks » Tracking
. Decode -
Raw data is decoded on the GPU Muon raw banks » Matching =

Selections =



SUMMARY AND OUTLOOK 17

» Particle physics experiments face extreme trigger challenges in the coming years

» Exploiting new algorithms, new hardware, and machine learning will be key to
the success of next-gen experiments

» Open questions:

4

With more sophisticated algorithms at earlier trigger, how do we ensure
performance/safety? backup triggers?

What community tools do we need to deploy ML at the trigger?

Which co-processors are best suited to which tasks for the high-level trigger?
How do we incorporate timing information at the trigger level?

What are the physics use-cases for L1 scouting at 40 MHz?

What can we do with the new trigger hardware capabilities which we aren't
thinking about?

L1 gives us a fundamental limitation but is there more we can exploit at the
HLT?

Can we make a (realistic) wish-list for triggerable characteristics of events?
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Efficiency

MUON RECONSTRUCTION WITH KALMAN FILTER

i)

( 0 O
o b)
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multiple
scattering

» Phase-2 : improved reconstruction using a Kalman filter

» lterative outer-inner tracking to reconstruct tracks and

o
M

G- HPW' +D\

K= PHT|S™

}?: Xn + KﬂKalman Gain

assign track pr (as offline)

» Both PV constrained and unconstrained tracks: displaced

standalone muons
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\5 matrix inversion!
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Key:
Muon
Electron
Charged Hadron (e.g. Pion)
=~ = = - Neutral Hadron (e.g. Neutron)
= === Photon

Calorimeter

Vertex
Constrained Unconstrained
Measurement Measurement
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Calorimeter Trigger Muon Trigger
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UPGRADING THE LEVEL-1 TRIGGER (AFTER) 21

More and better information available in the Level-1 trigger! What can we do with it?
" Track Trigger Calorimeter Trigger . Muon Trigger
1 (~ N ~ 2
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