
NEW IDEAS & TECHNOLOGIES IN
TRIGGER FOR HL-LHC (AND RUN 3)

JAVIER DUARTE (UCSD)
OCTOBER 23, 2019
WEST COAST LHC JAMBOREE, SLAC

NEW IDEAS AND TECHNOLOGIES FOR TRIGGER 2ALL FPGA ARCHITECTURE 16

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

Typical modern FPGA:

(Kintex ultrascale+)

1.3M FFs

700k LUTs

5500 DSPs

2200 BRAMs

O(50-100) optical
transceivers

running at  

~O(15) Gbs

NEW IDEAS AND TECHNOLOGIES FOR TRIGGER 2

‣ Modern FPGAs with large amounts of  
embedded components that perform  
multiplication (DSPs), apply logical  
functions (LUTs), or store memory (BRAM)

ALL FPGA ARCHITECTURE 16

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

Typical modern FPGA:

(Kintex ultrascale+)

1.3M FFs

700k LUTs

5500 DSPs

2200 BRAMs

O(50-100) optical
transceivers

running at  

~O(15) Gbs

NEW IDEAS AND TECHNOLOGIES FOR TRIGGER 2

‣ Modern FPGAs with large amounts of  
embedded components that perform  
multiplication (DSPs), apply logical  
functions (LUTs), or store memory (BRAM)

‣ High level synthesis to more easily program FPGAs

ALL FPGA ARCHITECTURE 16

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

Typical modern FPGA:

(Kintex ultrascale+)

1.3M FFs

700k LUTs

5500 DSPs

2200 BRAMs

O(50-100) optical
transceivers

running at  

~O(15) Gbs

NEW IDEAS AND TECHNOLOGIES FOR TRIGGER 2

‣ Modern FPGAs with large amounts of  
embedded components that perform  
multiplication (DSPs), apply logical  
functions (LUTs), or store memory (BRAM)

‣ High level synthesis to more easily program FPGAs

‣ Sophisticated algorithms

ALL FPGA ARCHITECTURE 16

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

Typical modern FPGA:

(Kintex ultrascale+)

1.3M FFs

700k LUTs

5500 DSPs

2200 BRAMs

O(50-100) optical
transceivers

running at  

~O(15) Gbs

NEW IDEAS AND TECHNOLOGIES FOR TRIGGER 2

‣ Modern FPGAs with large amounts of  
embedded components that perform  
multiplication (DSPs), apply logical  
functions (LUTs), or store memory (BRAM)

‣ High level synthesis to more easily program FPGAs

‣ Sophisticated algorithms

‣ Machine learning

ALL FPGA ARCHITECTURE 16

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

Typical modern FPGA:

(Kintex ultrascale+)

1.3M FFs

700k LUTs

5500 DSPs

2200 BRAMs

O(50-100) optical
transceivers

running at  

~O(15) Gbs

NEW IDEAS AND TECHNOLOGIES FOR TRIGGER 2

‣ Modern FPGAs with large amounts of  
embedded components that perform  
multiplication (DSPs), apply logical  
functions (LUTs), or store memory (BRAM)

‣ High level synthesis to more easily program FPGAs

‣ Sophisticated algorithms

‣ Machine learning

‣ GPUs or FPGAs or ASICs as co-processors for software trigger

ALL FPGA ARCHITECTURE 16

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

Typical modern FPGA:

(Kintex ultrascale+)

1.3M FFs

700k LUTs

5500 DSPs

2200 BRAMs

O(50-100) optical
transceivers

running at  

~O(15) Gbs

3LHC EVENT PROCESSING

1 ns 1 μs 1 s1 ms

Compute
Latency

40 MHz

Challenges:  
Each collision produces O(103) particles 
The detectors have O(108) sensors  
Extreme data rates of O(100 TB/s)

3LHC EVENT PROCESSING

1 ns 1 μs 1 s1 ms

Compute
Latency

FPGAs

40 MHz
L1 Trigger

750 kHz

Challenges:  
Each collision produces O(103) particles 
The detectors have O(108) sensors  
Extreme data rates of O(100 TB/s)

3LHC EVENT PROCESSING

1 ns 1 μs 1 s1 ms

Compute
Latency

FPGAs CPUs

ML

High-Level
Trigger

7.5 kHz
>1 MB/evt

40 MHz
L1 Trigger

750 kHz

Challenges:  
Each collision produces O(103) particles 
The detectors have O(108) sensors  
Extreme data rates of O(100 TB/s)

3LHC EVENT PROCESSING

1 ns 1 μs 1 s1 ms

Compute
Latency

FPGAs CPUs CPUs

ML ML

High-Level
Trigger

7.5 kHz
>1 MB/evt

40 MHz
L1 Trigger

750 kHz

Offline

Challenges:  
Each collision produces O(103) particles 
The detectors have O(108) sensors  
Extreme data rates of O(100 TB/s)

GPUs

3LHC EVENT PROCESSING

1 ns 1 μs 1 s1 ms

Compute
Latency

FPGAs CPUs CPUs

ML ML

FPGAs FPGAs

ML

High-Level
Trigger

7.5 kHz
>1 MB/evt

40 MHz
L1 Trigger

750 kHz

Offline

Challenges:  
Each collision produces O(103) particles 
The detectors have O(108) sensors  
Extreme data rates of O(100 TB/s)

GPUs

6/7/19 16

Firmware status

● There are nine processing steps currently, each of which
will have multiple instances on the FPGA:

– Memories used to communicate between steps

● Nearly all have one instance written and tested to be
functionally correct:

– Different instances will be generated using C++
template programming

InputRouter

VMRouter

TrackletEngine

TrackletCalculator

ProjectionRouter

MatchEngine

MatchCalculator

KalmanFilter

DuplicateRemoval

LEVEL-1 TRACK TRIGGER 4

6/7/19 9

Matches in other layers/disks
● From these seeds, parameters and projections to other layers/disks are

calculated:

– Assume tracks originate from beamline

● The projections are used to calculate residuals and match stubs in additional
layers/disks:

– This yields full tracks that are the inputs to the final track fit

‣ Algorithm approach: tracklet and Kalman filter hybrid
algorithm written in Vivado HLS to expedite
development
‣ Tracks are seeded with pairs of stubs in adjacent

layers
‣ Projections to other layers are calculated (assuming

beamline constraint)
‣ Full tracks after duplicate removal are inputs to the

final track fit (Kalman filter)
‣ R&D efforts: displaced tracking for long-lived

particles, etc.

CORRELATOR TRIGGER 5

‣ Correlator layer 1 will process pileup mitigated candidates
{μ,e,γ,h±,h0,vtx}

‣ Full correlator trigger must complete all processing & transmit
trigger objects {μ,e,γ,τ,j,MET,etc.} to the GT within 2.5 μs

3

?

Correlator Layout

Tracks

Calo
Clusters
(EM+Had)

Muons

Objects

Correlator Layer-2Correlator
Layer-1

Taus Jets

Isolation

Combinations

Vertexing

Particle
Flow

PUPPI

GT

Timing?

Tracks, Muons

MACHINE LEARNING IN FPGAS WITH HLS4ML 6

compressed
model

Keras
TensorFlow

PyTorch
…

tune configuration
precision

reuse/pipeline

HLS
project

HLS
conversion

Co-processing kernel

Custom firmware
design

model

Usual ML
software workflow

hls 4 ml

hls4ml

HLS 4 ML

‣ hls4ml for physicists or ML experts to translate ML algorithms
into FPGA firmware

JINST 13 (2018) P07027

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913

MACHINE LEARNING IN FPGAS WITH HLS4ML 6

compressed
model

Keras
TensorFlow

PyTorch
…

tune configuration
precision

reuse/pipeline

HLS
project

HLS
conversion

Co-processing kernel

Custom firmware
design

model

Usual ML
software workflow

hls 4 ml

hls4ml

HLS 4 ML

‣ hls4ml for physicists or ML experts to translate ML algorithms
into FPGA firmware

JINST 13 (2018) P07027

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913

MACHINE LEARNING IN FPGAS WITH HLS4ML 6

compressed
model

Keras
TensorFlow

PyTorch
…

tune configuration
precision

reuse/pipeline

HLS
project

HLS
conversion

Co-processing kernel

Custom firmware
design

model

Usual ML
software workflow

hls 4 ml

hls4ml

HLS 4 ML

‣ hls4ml for physicists or ML experts to translate ML algorithms
into FPGA firmware

JINST 13 (2018) P07027

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913

TRANSLATION OF ML MODELS 7

TRANSLATION OF ML MODELS 7

hls4ml convert -c keras-config.ymlTranslation

KerasJson: keras/KERAS_3layer.json
KerasH5: keras/KERAS_3layer_weights.h5
OutputDir: my-hls-test
ProjectName: myproject
XilinxPart: xcku115-flvb2104-2-i
ClockPeriod: 5
IOType: io_parallel # options: io_serial/io_parallel
HLSConfig:
 Model:
 Precision: ap_fixed<16,6>
 ReuseFactor: 1
 Strategy: Resource # options: Latency/Resource

TRANSLATION OF ML MODELS 7

hls4ml convert -c keras-config.ymlTranslation

KerasJson: keras/KERAS_3layer.json
KerasH5: keras/KERAS_3layer_weights.h5
OutputDir: my-hls-test
ProjectName: myproject
XilinxPart: xcku115-flvb2104-2-i
ClockPeriod: 5
IOType: io_parallel # options: io_serial/io_parallel
HLSConfig:
 Model:
 Precision: ap_fixed<16,6>
 ReuseFactor: 1
 Strategy: Resource # options: Latency/Resource

TRANSLATION OF ML MODELS 7

hls4ml convert -c keras-config.ymlTranslation

Model

Config

KerasJson: keras/KERAS_3layer.json
KerasH5: keras/KERAS_3layer_weights.h5
OutputDir: my-hls-test
ProjectName: myproject
XilinxPart: xcku115-flvb2104-2-i
ClockPeriod: 5
IOType: io_parallel # options: io_serial/io_parallel
HLSConfig:
 Model:
 Precision: ap_fixed<16,6>
 ReuseFactor: 1
 Strategy: Resource # options: Latency/Resource

TRANSLATION OF ML MODELS 7

‣ IOType: parallel or serial
‣ ReuseFactor: how much to

parallelize
‣ Precision: inputs, weights, biases
‣ Strategy:
‣ Resource for large NN
‣ Latency for small NN  

(fully pipelined)

hls4ml convert -c keras-config.ymlTranslation

Model

Config

KerasJson: keras/KERAS_3layer.json
KerasH5: keras/KERAS_3layer_weights.h5
OutputDir: my-hls-test
ProjectName: myproject
XilinxPart: xcku115-flvb2104-2-i
ClockPeriod: 5
IOType: io_parallel # options: io_serial/io_parallel
HLSConfig:
 Model:
 Precision: ap_fixed<16,6>
 ReuseFactor: 1
 Strategy: Resource # options: Latency/Resource

TRANSLATION OF ML MODELS 7

‣ IOType: parallel or serial
‣ ReuseFactor: how much to

parallelize
‣ Precision: inputs, weights, biases
‣ Strategy:
‣ Resource for large NN
‣ Latency for small NN  

(fully pipelined)

hls4ml convert -c keras-config.ymlTranslation

Model

Config

hls4ml build -p my-hls-test -a

Build HLS project

NETWORK TUNING: COMPRESSION & RESOURCES 8

Max DSP

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Quantization

 29

0101.1011101010
width

fractionalinteger

Full performance
at 6 integer bits

Scan integer bits

Fractional bits fixed to 8

Scan fractional bits

Integer bits fixed to 6

Full performance
at 8 fractional bits

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

ap_fixed<width,integer> • Quantify the performance of the classifier with the AUC

• Expected AUC = AUC achieved by 32-bit floating point
inference of the neural network

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

NETWORK TUNING: COMPRESSION & RESOURCES 8

‣ Big reduction in DSPs (multipliers) with compression

Max DSP

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Quantization

 29

0101.1011101010
width

fractionalinteger

Full performance
at 6 integer bits

Scan integer bits

Fractional bits fixed to 8

Scan fractional bits

Integer bits fixed to 6

Full performance
at 8 fractional bits

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

ap_fixed<width,integer> • Quantify the performance of the classifier with the AUC

• Expected AUC = AUC achieved by 32-bit floating point
inference of the neural network

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

NETWORK TUNING: COMPRESSION & RESOURCES 8

‣ Big reduction in DSPs (multipliers) with compression
‣ Easily fits on 1 FPGA after compression

Max DSP

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Quantization

 29

0101.1011101010
width

fractionalinteger

Full performance
at 6 integer bits

Scan integer bits

Fractional bits fixed to 8

Scan fractional bits

Integer bits fixed to 6

Full performance
at 8 fractional bits

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

ap_fixed<width,integer> • Quantify the performance of the classifier with the AUC

• Expected AUC = AUC achieved by 32-bit floating point
inference of the neural network

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

NETWORK TUNING: PARALLELIZATION & TIMING 9

‣ Increasing reuse factor, increases latency

~35 clocks  
@ 200 MHz  

= 175 ns

~15 clocks  
@ 200 MHz  

= 75 ns

NETWORK TUNING: PARALLELIZATION & TIMING 9

‣ Increasing reuse factor, increases latency

~35 clocks  
@ 200 MHz  

= 175 ns

~15 clocks  
@ 200 MHz  

= 75 ns

For low-latency, small reuse factor, inference in O(100 ns)! 
What if we have O(ms)? Can go to bigger networks!

MACHINE LEARNING IN FPGAS 10

MACHINE LEARNING IN FPGAS 10

‣ Inference of ML algorithms possible in O(100 ns) on 1 FPGA with hls4ml!

MACHINE LEARNING IN FPGAS 10

‣ Inference of ML algorithms possible in O(100 ns) on 1 FPGA with hls4ml!
‣ Applications across CMS, ATLAS, DUNE, and accelerator controls:

MACHINE LEARNING IN FPGAS 10

‣ Inference of ML algorithms possible in O(100 ns) on 1 FPGA with hls4ml!
‣ Applications across CMS, ATLAS, DUNE, and accelerator controls:
‣ Muon pT determination in the CMS endcap with a DNN:  

runs in 160 ns on an FPGA and reduces the fake muon rate by  
up to 80%

MACHINE LEARNING IN FPGAS 10

muon

‣ Inference of ML algorithms possible in O(100 ns) on 1 FPGA with hls4ml!
‣ Applications across CMS, ATLAS, DUNE, and accelerator controls:
‣ Muon pT determination in the CMS endcap with a DNN:  

runs in 160 ns on an FPGA and reduces the fake muon rate by  
up to 80%

‣ Variational autoencoder for anomaly detection

MACHINE LEARNING IN FPGAS 10

muon

‣ Inference of ML algorithms possible in O(100 ns) on 1 FPGA with hls4ml!
‣ Applications across CMS, ATLAS, DUNE, and accelerator controls:
‣ Muon pT determination in the CMS endcap with a DNN:  

runs in 160 ns on an FPGA and reduces the fake muon rate by  
up to 80%

‣ Variational autoencoder for anomaly detection

‣ Currently supported:
‣ Small and large dense NNs
‣ Binary and ternary NNs
‣ Small 1D/2D CNNs

‣ Planned support
‣ Big 1D/2D CNNs
‣ Graph NNs
‣ Other HLS/RTL backends

CO-PROCESSORS 11

Specialized co-processor hardware
for machine learning inference Catapult/Brainwave

FPGA

11

FPGA
FPGA

ASIC

ASIC

FPGA

CO-PROCESSORS 11

Specialized co-processor hardware
for machine learning inference Catapult/Brainwave

FPGA

11

CLOUD VS EDGE 30

Cloud vs. Edge

9Kevin PedroECoM2X

• Cloud service has latency

• Run CMSSW on Azure cloud machine
→ simulate local installation of FPGAs
(“on-prem” or “edge”)

• Provides test of “HLT-like” performance

Network input

CPU farm

FPGAPrediction

CMSSW

Heterogeneous Cloud Resource

CPU

FPGA

Heterogeneous Edge Resource

CPU

CMSSW

and there is a vast amount of research on specialized hardware for machine learning that the
particle physics community can take advantage of

• Often machine learning algorithms are quite parallelizable making them amenable to accelera-
tion on specialized hardware. This is not always true of physics-based algorithms, or perhaps
they would have to be re-written to accommodate new, and often changing, computing hardware

We therefore focus on ML acceleration in our study. Of course, to fully capitalize on the ML-focused
hardware developments, we rely on the continued research and development of ML applications for
particle physics tasks. However, given recent work across many neutrino and LHC experiments []
and initiatives such as the HepTrkX [] and Tracking ML Kaggle Challenge [], machine learning
applications across particle physics is growing rapidly.

The other important aspect is to understand is how to integrate FPGA co-processors into the parti-
cle physics computing model without disrupting the current multi-threaded parallel module processing
paradigm. A natural method for integrating heterogeneous resources is via a network service []. This
client-server model is flexible to be used locally by a single user or within a computing farm where a
single thread communicates with the server via Remote Procedure Calls (RPC) sending information as
protocol bu�ers. In our particular case, the gRPC package [] interfaces with Brainwave system. With
this setup, we now define a communication method between FPGA co-processor resources and our
primary experimental computing CPU-based data centers. This is illustrated in Fig. 4 where a module
running on our experimental compute farm requires fast inference of a particular ML algorithm via
an RPC. At the moment, we test the performance of a single task which makes a request to a single
cloud service. However, scaling up the number of requests is natural for the Brainwave system which
is capable of load balancing of service requests []. In the next section, we study the performance of
this computing stack and compare it to other results in the literature.

Network input

Datacenter (CPU farm)

CPU FPGA

Prediction

Experimental

Software

gRPC protocol Heterogeneous
Cloud Resource

Figure 4: An illustration of FPGA-accelerated machine learning cloud resources integrated into the
experimental physics computing model as a service

One may also consider a case where the FPGA co-processor resources are physically on the
same farm as the CPUs, as a so-called edge compute resource. This is illustrated in Fig. 5. In this
scenario, the same gRPC interface protocols are used to communicate with the FPGA hardware and

– 5 –

the software access for fast inference is unchanged. To benchmark this scenario, we run our particle
physics applications on a virtual machine (VM) on the cloud datacenter. Again, results are presented
in the following section.

CPU
FPGA

Heterogeneous
“Edge” Resource

gRPC
 protocol

Experimental
software

Figure 5: An illustration of FPGA-accelerated machine learning edge resources integrated into the
experimental physics computing model as a service

Describe the Resnet-50 deployment. The service is defined in two steps: a featurizer step which
is performed on the FPGA, and the classifer step, which is performed on the CPU.

– 6 –

SONIC 12

12

arXiv:1904.08986

https://arxiv.org/abs/1904.08986

CLOUD VS EDGE 30

Cloud vs. Edge

9Kevin PedroECoM2X

• Cloud service has latency

• Run CMSSW on Azure cloud machine
→ simulate local installation of FPGAs
(“on-prem” or “edge”)

• Provides test of “HLT-like” performance

Network input

CPU farm

FPGAPrediction

CMSSW

Heterogeneous Cloud Resource

CPU

FPGA

Heterogeneous Edge Resource

CPU

CMSSW

and there is a vast amount of research on specialized hardware for machine learning that the
particle physics community can take advantage of

• Often machine learning algorithms are quite parallelizable making them amenable to accelera-
tion on specialized hardware. This is not always true of physics-based algorithms, or perhaps
they would have to be re-written to accommodate new, and often changing, computing hardware

We therefore focus on ML acceleration in our study. Of course, to fully capitalize on the ML-focused
hardware developments, we rely on the continued research and development of ML applications for
particle physics tasks. However, given recent work across many neutrino and LHC experiments []
and initiatives such as the HepTrkX [] and Tracking ML Kaggle Challenge [], machine learning
applications across particle physics is growing rapidly.

The other important aspect is to understand is how to integrate FPGA co-processors into the parti-
cle physics computing model without disrupting the current multi-threaded parallel module processing
paradigm. A natural method for integrating heterogeneous resources is via a network service []. This
client-server model is flexible to be used locally by a single user or within a computing farm where a
single thread communicates with the server via Remote Procedure Calls (RPC) sending information as
protocol bu�ers. In our particular case, the gRPC package [] interfaces with Brainwave system. With
this setup, we now define a communication method between FPGA co-processor resources and our
primary experimental computing CPU-based data centers. This is illustrated in Fig. 4 where a module
running on our experimental compute farm requires fast inference of a particular ML algorithm via
an RPC. At the moment, we test the performance of a single task which makes a request to a single
cloud service. However, scaling up the number of requests is natural for the Brainwave system which
is capable of load balancing of service requests []. In the next section, we study the performance of
this computing stack and compare it to other results in the literature.

Network input

Datacenter (CPU farm)

CPU FPGA

Prediction

Experimental

Software

gRPC protocol Heterogeneous
Cloud Resource

Figure 4: An illustration of FPGA-accelerated machine learning cloud resources integrated into the
experimental physics computing model as a service

One may also consider a case where the FPGA co-processor resources are physically on the
same farm as the CPUs, as a so-called edge compute resource. This is illustrated in Fig. 5. In this
scenario, the same gRPC interface protocols are used to communicate with the FPGA hardware and

– 5 –

the software access for fast inference is unchanged. To benchmark this scenario, we run our particle
physics applications on a virtual machine (VM) on the cloud datacenter. Again, results are presented
in the following section.

CPU
FPGA

Heterogeneous
“Edge” Resource

gRPC
 protocol

Experimental
software

Figure 5: An illustration of FPGA-accelerated machine learning edge resources integrated into the
experimental physics computing model as a service

Describe the Resnet-50 deployment. The service is defined in two steps: a featurizer step which
is performed on the FPGA, and the classifer step, which is performed on the CPU.

– 6 –

SONIC 12

12

‣ Services for Optimized Network
Inference on Coprocessors
(SONIC)
‣ Send jet images from CMSSW

to Microsoft Brainwave FPGA

arXiv:1904.08986

https://github.com/hls-fpga-machine-learning/SonicCMS
https://github.com/hls-fpga-machine-learning/SonicCMS
https://github.com/hls-fpga-machine-learning/SonicCMS
https://arxiv.org/abs/1904.08986

CLOUD VS EDGE 30

Cloud vs. Edge

9Kevin PedroECoM2X

• Cloud service has latency

• Run CMSSW on Azure cloud machine
→ simulate local installation of FPGAs
(“on-prem” or “edge”)

• Provides test of “HLT-like” performance

Network input

CPU farm

FPGAPrediction

CMSSW

Heterogeneous Cloud Resource

CPU

FPGA

Heterogeneous Edge Resource

CPU

CMSSW

and there is a vast amount of research on specialized hardware for machine learning that the
particle physics community can take advantage of

• Often machine learning algorithms are quite parallelizable making them amenable to accelera-
tion on specialized hardware. This is not always true of physics-based algorithms, or perhaps
they would have to be re-written to accommodate new, and often changing, computing hardware

We therefore focus on ML acceleration in our study. Of course, to fully capitalize on the ML-focused
hardware developments, we rely on the continued research and development of ML applications for
particle physics tasks. However, given recent work across many neutrino and LHC experiments []
and initiatives such as the HepTrkX [] and Tracking ML Kaggle Challenge [], machine learning
applications across particle physics is growing rapidly.

The other important aspect is to understand is how to integrate FPGA co-processors into the parti-
cle physics computing model without disrupting the current multi-threaded parallel module processing
paradigm. A natural method for integrating heterogeneous resources is via a network service []. This
client-server model is flexible to be used locally by a single user or within a computing farm where a
single thread communicates with the server via Remote Procedure Calls (RPC) sending information as
protocol bu�ers. In our particular case, the gRPC package [] interfaces with Brainwave system. With
this setup, we now define a communication method between FPGA co-processor resources and our
primary experimental computing CPU-based data centers. This is illustrated in Fig. 4 where a module
running on our experimental compute farm requires fast inference of a particular ML algorithm via
an RPC. At the moment, we test the performance of a single task which makes a request to a single
cloud service. However, scaling up the number of requests is natural for the Brainwave system which
is capable of load balancing of service requests []. In the next section, we study the performance of
this computing stack and compare it to other results in the literature.

Network input

Datacenter (CPU farm)

CPU FPGA

Prediction

Experimental

Software

gRPC protocol Heterogeneous
Cloud Resource

Figure 4: An illustration of FPGA-accelerated machine learning cloud resources integrated into the
experimental physics computing model as a service

One may also consider a case where the FPGA co-processor resources are physically on the
same farm as the CPUs, as a so-called edge compute resource. This is illustrated in Fig. 5. In this
scenario, the same gRPC interface protocols are used to communicate with the FPGA hardware and

– 5 –

the software access for fast inference is unchanged. To benchmark this scenario, we run our particle
physics applications on a virtual machine (VM) on the cloud datacenter. Again, results are presented
in the following section.

CPU
FPGA

Heterogeneous
“Edge” Resource

gRPC
 protocol

Experimental
software

Figure 5: An illustration of FPGA-accelerated machine learning edge resources integrated into the
experimental physics computing model as a service

Describe the Resnet-50 deployment. The service is defined in two steps: a featurizer step which
is performed on the FPGA, and the classifer step, which is performed on the CPU.

– 6 –

SONIC 12

12

the software access for fast inference is unchanged. To benchmark this scenario, we run our particle
physics applications on a virtual machine (VM) on the cloud datacenter. Again, results are presented
in the following section.

CPU
FPGA

Heterogeneous
“Edge” Resource

gRPC
 protocol

Experimental
software

Figure 5: An illustration of FPGA-accelerated machine learning edge resources integrated into the
experimental physics computing model as a service

Describe the Resnet-50 deployment. The service is defined in two steps: a featurizer step which
is performed on the FPGA, and the classifer step, which is performed on the CPU.

– 6 –

‣ Services for Optimized Network
Inference on Coprocessors
(SONIC)
‣ Send jet images from CMSSW

to Microsoft Brainwave FPGA
‣ Two modes: cloud service and

on premises

arXiv:1904.08986

https://github.com/hls-fpga-machine-learning/SonicCMS
https://github.com/hls-fpga-machine-learning/SonicCMS
https://github.com/hls-fpga-machine-learning/SonicCMS
https://arxiv.org/abs/1904.08986

SONIC LATENCY 13

13

Log x-axis Linear x-axis

arXiv:1904.08986

https://arxiv.org/abs/1904.08986

SONIC LATENCY 13

13

‣ Remote: FNAL (IL) to Azure (VA) ‹time› = 60 ms
‣ Highly dependent on network conditions

Log x-axis Linear x-axis

arXiv:1904.08986

https://arxiv.org/abs/1904.08986

SONIC LATENCY 13

13

‣ Remote: FNAL (IL) to Azure (VA) ‹time› = 60 ms
‣ Highly dependent on network conditions

‣ On-prem: run CMSSW on Azure ‹time› = 10 ms
‣ on FPGA: 1.8 ms for inference
‣ Remaining time used for classifying and I/O

Log x-axis Linear x-axis

arXiv:1904.08986

https://arxiv.org/abs/1904.08986

SONIC+BRAINWAVE IN LHC COMPUTING 14

14

‣ Brainwave + SONIC achieves
‣ 175× (30×) on-prem (remote) better latency  

vs. CMS CPU
‣ 1 FPGA service can serve 100s of CPU worker nodes
‣ Competitive throughput vs. GPU as a service

Brainwave Service

Worker Node
JetImageProducer

Worker Node
JetImageProducer

Worker Node
JetImageProducer

43

2xCPU

Observations

Alternative: “Persistent” Neural Nets

…

Brainwave service
Network

St
an

da
rd

 L
H

C
co

m
pu

tin
g

arXiv:1904.08986

https://arxiv.org/abs/1904.08986

ACCELERATING HIGH-LEVEL TRIGGER 15

Full tracking
30% Pixel tracking

9%

Jet/MET
3%

E/Gamma
4%

ECAL
8%

HCAL
16%

I/O & logic
15%

Muon
7%

PF & Tau
8%

ACCELERATING HIGH-LEVEL TRIGGER 15

Full tracking
30% Pixel tracking

9%

Jet/MET
3%

E/Gamma
4%

ECAL
8%

HCAL
16%

I/O & logic
15%

Muon
7%

PF & Tau
8%

‣ HCAL reconstruction and tracking
contribute significantly to HLT
compute time

ACCELERATING HIGH-LEVEL TRIGGER 15

Full tracking
30% Pixel tracking

9%

Jet/MET
3%

E/Gamma
4%

ECAL
8%

HCAL
16%

I/O & logic
15%

Muon
7%

PF & Tau
8%

5

Machine Learning HCal
Reconstruction

● Take similar inputs as MAHI and train a regression

– Output is the gen rec hit energy (w/o PU)

● 11 Inputs : 8 raw energies (8 TS) + iη + iφ + depth

● 3 hidden layers (15, 10, 5 nodes)

● Network is quite small (391 parameters)

– Work grew from current L1 trigger work: minimal size

● Model:

TS0
TS1
TS2
TS3
TS4
TS5
TS6
TS7
iη
iφ

depth

Gen
energy

Inputs

Output

Dense Layer (15)

Dense Layer (10)

Dense Layer (5)

‣ HCAL reconstruction and tracking
contribute significantly to HLT
compute time

‣ GPU/FPGA as co-processor can
reduce compute time

ACCELERATING HIGH-LEVEL TRIGGER 15

Full tracking
30% Pixel tracking

9%

Jet/MET
3%

E/Gamma
4%

ECAL
8%

HCAL
16%

I/O & logic
15%

Muon
7%

PF & Tau
8%

5

Machine Learning HCal
Reconstruction

● Take similar inputs as MAHI and train a regression

– Output is the gen rec hit energy (w/o PU)

● 11 Inputs : 8 raw energies (8 TS) + iη + iφ + depth

● 3 hidden layers (15, 10, 5 nodes)

● Network is quite small (391 parameters)

– Work grew from current L1 trigger work: minimal size

● Model:

TS0
TS1
TS2
TS3
TS4
TS5
TS6
TS7
iη
iφ

depth

Gen
energy

Inputs

Output

Dense Layer (15)

Dense Layer (10)

Dense Layer (5)

‣ HCAL reconstruction and tracking
contribute significantly to HLT
compute time

‣ GPU/FPGA as co-processor can
reduce compute time
‣ Patatrack pixel reconstruction on

GPUs

ACCELERATING HIGH-LEVEL TRIGGER 15

Full tracking
30% Pixel tracking

9%

Jet/MET
3%

E/Gamma
4%

ECAL
8%

HCAL
16%

I/O & logic
15%

Muon
7%

PF & Tau
8%

5

Machine Learning HCal
Reconstruction

● Take similar inputs as MAHI and train a regression

– Output is the gen rec hit energy (w/o PU)

● 11 Inputs : 8 raw energies (8 TS) + iη + iφ + depth

● 3 hidden layers (15, 10, 5 nodes)

● Network is quite small (391 parameters)

– Work grew from current L1 trigger work: minimal size

● Model:

TS0
TS1
TS2
TS3
TS4
TS5
TS6
TS7
iη
iφ

depth

Gen
energy

Inputs

Output

Dense Layer (15)

Dense Layer (10)

Dense Layer (5)

‣ HCAL reconstruction and tracking
contribute significantly to HLT
compute time

‣ GPU/FPGA as co-processor can
reduce compute time
‣ Patatrack pixel reconstruction on

GPUs
‣ HCAL reconstruction with ML on

GPUs/FPGAs (as a service)

LHCB HIGH-LEVEL TRIGGER ON GPUS 16

‣ By 2021, full LHCb trigger chain in software
(HLT)

‣ Run full first stage of HLT (HLT1) on GPUs
‣ One GPU has to process 30/60 k events/s
‣ The current sequence of full Velo, primary

vertices, full UT, and SciFi decoding runs on
an NVIDIA V100 at 112 kHz

 6

HLT1 Sequence

Clustering Tracking

Tracking

Tracking

Velo

UT

SciFi Kalman

Find primary
vertices

Muon
Decode

raw banks
Matching

Decode
raw banks

Decode
raw banks

Decode
raw banks

Selections

Physics and Computing Performance of reconstruction
 algorithms for the GPU High Level Trigger 1 of LHCb

Dorothea vom Bruch*1

on behalf of the LHCb collaboration
1 LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France

x

z

y

z

y

z

Motivation

From 2021: software-only high level trigger (HLT)

Significant computing challenge

Potential option: use GPUs

R&D standalone project: Allen

Run full first stage of HLT (HLT1) on GPUs

Process thousands of events in parallel

Exploit data-parallelism within events

One GPU has to process 30/60 k events/s

Infrastructure of Allen:

Custom memory manager for GPU memory

Static scheduler

Physics performance checks

Tasks of Allen:

Run full HLT1 chain

Reduce data rate by factor 30 based on single

and two-track selections

Extrapolate Velo tracks to
beamline, find z position of track
Fill histogram with z-positions
Find peaks in histogram seeds
Vertex fit using weight

Primary vertex finding

Data flow

Raw data

Selection decisions

Parallelize over events
and triplets to forward

Parallelize over events
and Velo tracks

Parallelize over events

Parallelize over events
and seeds found

Parallelize over events
and SciFi tracks

Details of the infrastructure of Allen:
Talk by Daniel Campora,
March 14th, 16:10, Track1

* email address: dorothea.vom.bruch@cern.ch

ACAT Conference, March 2019, Saas Fee

References for the baseline HLT:
LHCb Trigger and Online Upgrade TDR: CERN-LHCC-2014-016 ; LHCB-TDR-016
Upgrade Software and Computing TDR: CERN-LHCC-2018-007 ; LHCB-TDR-017

Quadruplets / triplets in last station

Propagate to other stations

Masked clustering

Find cluster seeds
Load only neighbouring pixels of a seed,
use 8-bit mask to find cluster

Triplet candidates

t0

t1
t2
t3
t4

t5

φ0

φ1

φ2

φ3
φ4

φ5

Triplet forwarding

Parallelize over events
and within raw banks

Parallelize over events
and seeds

Parallelize over events
and clusters on the middle layer

Pattern recognition: Search by triplet

Velo: Pixel detector, 26 planes

window -1 window +1

VELO track Activated
strip (hit)

track extrapolation

UT plane section

main window

next window

previous window

main sector range

next sector range

previous sector range

y

x

Pattern recognition

Extrapolate Velo tracks to the UT
planes, define search windows
Form 3-/4-hit tracks
Obtain momentum estimate from
chi2-fit

Parallelize over events,
layers and Velo tracks

Parallelize over events
and Velo tracks

UT: Strip detector, 4 planes

Pattern recognition

Extrapolate UT tracks to SciFi planes with a
parametrization for the magnetic field deflection
Challenge: single fibre efficiency ~98%

Use single precision
Parametrize transport in magnetic field
Run w/o smoother

Parallelize over events,
SciFi tracks and stations

Muon ID

Extrapolate SciFi tracks to muon stations, find closest hits
Decide if track originates from a muon
Work in progress

Link to Allen
gitlab repository

Muon: 4 multi wire

proportional chambers
First project running a full HLT on GPUs for a HEP experiment

 All decoding, clustering and tracking algorithms are

implemented in CUDA

 The current sequence of full Velo, primary

vertices, full UT and SciFi decoding
runs on a V100 at

112 kHz

Summary

Event builder
node

30 MHz inelastic event rate
(full rate event building)

Software High Level Trigger

GB/ s to storage

Full event reconstruction, inclusive and
exclusive kinematic/ geometric selections

Add offline precision particle identification
and track quality information to selections
Output full event information for inclusive
triggers, trigger candidates and related
primary vertices for exclusive triggers

LHCb Upgrade Trigger Diagram

Buffer events to disk, perform online
detector calibration and alignment

10

1.

2. 3.
SciFi: 12 planes of 2 x 2.5 m long

scintillating fibre arrays
4.

Kalman filter5.

6.

magnetic field
strength

Work in progress

Raw data is decoded on the GPU

x u v x x u v x x u v x

x u v x x u v x x u v x

x fiber u fiber

yu

xu

y

x

Track reconstruction efficiency

Track reconstruction efficiency

PV reconstruction efficiency

Momentum resolution

IP resolution

LHCb simulation, unofficial

LHCb simulation, unofficial

LHCb simulation, unofficial

LHCb simulation, unofficial

LHCb simulation, unofficial

Physics and Computing Performance of reconstruction
 algorithms for the GPU High Level Trigger 1 of LHCb

Dorothea vom Bruch*1

on behalf of the LHCb collaboration
1 LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France

x

z

y

z

y

z

Motivation

From 2021: software-only high level trigger (HLT)

Significant computing challenge

Potential option: use GPUs

R&D standalone project: Allen

Run full first stage of HLT (HLT1) on GPUs

Process thousands of events in parallel

Exploit data-parallelism within events

One GPU has to process 30/60 k events/s

Infrastructure of Allen:

Custom memory manager for GPU memory

Static scheduler

Physics performance checks

Tasks of Allen:

Run full HLT1 chain

Reduce data rate by factor 30 based on single

and two-track selections

Extrapolate Velo tracks to
beamline, find z position of track
Fill histogram with z-positions
Find peaks in histogram seeds
Vertex fit using weight

Primary vertex finding

Data flow

Raw data

Selection decisions

Parallelize over events
and triplets to forward

Parallelize over events
and Velo tracks

Parallelize over events

Parallelize over events
and seeds found

Parallelize over events
and SciFi tracks

Details of the infrastructure of Allen:
Talk by Daniel Campora,
March 14th, 16:10, Track1

* email address: dorothea.vom.bruch@cern.ch

ACAT Conference, March 2019, Saas Fee

References for the baseline HLT:
LHCb Trigger and Online Upgrade TDR: CERN-LHCC-2014-016 ; LHCB-TDR-016
Upgrade Software and Computing TDR: CERN-LHCC-2018-007 ; LHCB-TDR-017

Quadruplets / triplets in last station

Propagate to other stations

Masked clustering

Find cluster seeds
Load only neighbouring pixels of a seed,
use 8-bit mask to find cluster

Triplet candidates

t0

t1
t2
t3
t4

t5

φ0

φ1

φ2

φ3
φ4

φ5

Triplet forwarding

Parallelize over events
and within raw banks

Parallelize over events
and seeds

Parallelize over events
and clusters on the middle layer

Pattern recognition: Search by triplet

Velo: Pixel detector, 26 planes

window -1 window +1

VELO track Activated
strip (hit)

track extrapolation

UT plane section

main window

next window

previous window

main sector range

next sector range

previous sector range

y

x

Pattern recognition

Extrapolate Velo tracks to the UT
planes, define search windows
Form 3-/4-hit tracks
Obtain momentum estimate from
chi2-fit

Parallelize over events,
layers and Velo tracks

Parallelize over events
and Velo tracks

UT: Strip detector, 4 planes

Pattern recognition

Extrapolate UT tracks to SciFi planes with a
parametrization for the magnetic field deflection
Challenge: single fibre efficiency ~98%

Use single precision
Parametrize transport in magnetic field
Run w/o smoother

Parallelize over events,
SciFi tracks and stations

Muon ID

Extrapolate SciFi tracks to muon stations, find closest hits
Decide if track originates from a muon
Work in progress

Link to Allen
gitlab repository

Muon: 4 multi wire

proportional chambers
First project running a full HLT on GPUs for a HEP experiment

 All decoding, clustering and tracking algorithms are

implemented in CUDA

 The current sequence of full Velo, primary

vertices, full UT and SciFi decoding
runs on a V100 at

112 kHz

Summary

Event builder
node

30 MHz inelastic event rate
(full rate event building)

Software High Level Trigger

GB/ s to storage

Full event reconstruction, inclusive and
exclusive kinematic/ geometric selections

Add offline precision particle identification
and track quality information to selections
Output full event information for inclusive
triggers, trigger candidates and related
primary vertices for exclusive triggers

LHCb Upgrade Trigger Diagram

Buffer events to disk, perform online
detector calibration and alignment

10

1.

2. 3.
SciFi: 12 planes of 2 x 2.5 m long

scintillating fibre arrays
4.

Kalman filter5.

6.

magnetic field
strength

Work in progress

Raw data is decoded on the GPU

x u v x x u v x x u v x

x u v x x u v x x u v x

x fiber u fiber

yu

xu

y

x

Track reconstruction efficiency

Track reconstruction efficiency

PV reconstruction efficiency

Momentum resolution

IP resolution

LHCb simulation, unofficial

LHCb simulation, unofficial

LHCb simulation, unofficial

LHCb simulation, unofficial

LHCb simulation, unofficial

▸ Particle physics experiments face extreme trigger challenges in the coming years

▸ Exploiting new algorithms, new hardware, and machine learning will be key to
the success of next-gen experiments

▸ Open questions:

▸ With more sophisticated algorithms at earlier trigger, how do we ensure
performance/safety? backup triggers?

▸ What community tools do we need to deploy ML at the trigger?

▸ Which co-processors are best suited to which tasks for the high-level trigger?

▸ How do we incorporate timing information at the trigger level?

▸ What are the physics use-cases for L1 scouting at 40 MHz?

▸ What can we do with the new trigger hardware capabilities which we aren’t
thinking about?

▸ L1 gives us a fundamental limitation but is there more we can exploit at the
HLT?

▸ Can we make a (realistic) wish-list for triggerable characteristics of events?

SUMMARY AND OUTLOOK 17

BACKUP
JAVIER DUARTE (UCSD)
OCTOBER 23, 2019
WEST COAST LHC JAMBOREE, SLAC

MUON RECONSTRUCTION WITH KALMAN FILTER 19

US CMS 2019 meetingL. Cadamuro (UF) Level-1 muon trigger: towards the Run 3 and the Phase-2

Standalone muons in the barrel
■ Phase-2 : improved reconstruction using a

Kalman filter : kBMTF

□ iterative outer-inner tracking, reconstruct tracks

and assigns the track pT

□ in line with the offline reconstruction

■ Both PV constrained and unconstrained tracks:  
displaced standalone muons

�7

L1 Kalman Filter: Overview

• Iterative track finding algorithm combining stub measurements with
predictions based on phi, bending angle, and curvature

• Starts from outermost muon station, propagates inward and updates at
each station

• Provides both vertex constrained and unconstrained measurements
• Can trigger displaced particles

• Fully commissioned by the end of 2018 data taking
3/25/2019 3

Phase II: Efficiency with High Pileup
• 200 pileup single muon sample
• Matched muons with L1 track PT > 20 GeV
• Prompt KBMTF maintains higher efficiency

3/25/2019 10

Phase II: Rates at 200 pileup

• Similar behavior to zero-bias data
• Rates scale ∼linearly with pileup, as expected

3/25/2019 11

◀ High efficiency
maintained at PU 200

≈20 kHz rate 
@ 20 GeV threshold:

standalone muon
trigger ▶︎

6

Challenge: Lots of math (to be done with gates...)
Every step consists of track propagation and parameter update (k=q/P

T
)

multiple
scattering

position error

matrix inversion!

Kalman Gain

● Many multiplications lots of logic →

● Solution: Use application specific DSP

blocks in modern FPGAs

– Used for radar, machine learning

FFT, etc

–

● Mapping Kalman operations to DSP reduces

FPGA utilization by more than x5!

● Matrix inversion and division while deriving

Kalman gain:

● Studying the Kalman gain dependencies

– It depends on the curvature k and the

track pattern already reconstructed!

● We can lookup the Kalman gain as a function

of k and track pattern! (8 bit memory – easy)

– Identical physics results between

approximation and full matrix algebra

– Minimal utilization

● Full algorithm latency = 190 ns!

‣ Phase-2 : improved reconstruction using a Kalman filter
‣ Iterative outer-inner tracking to reconstruct tracks and

assign track pT (as offline)
‣ Both PV constrained and unconstrained tracks: displaced

standalone muons

US CMS 2019 meetingL. Cadamuro (UF) Level-1 muon trigger: towards the Run 3 and the Phase-2

Standalone muons in the barrel
■ Phase-2 : improved reconstruction using a

Kalman filter : kBMTF

□ iterative outer-inner tracking, reconstruct tracks

and assigns the track pT

□ in line with the offline reconstruction

■ Both PV constrained and unconstrained tracks:  
displaced standalone muons

�7

L1 Kalman Filter: Overview

• Iterative track finding algorithm combining stub measurements with
predictions based on phi, bending angle, and curvature

• Starts from outermost muon station, propagates inward and updates at
each station

• Provides both vertex constrained and unconstrained measurements
• Can trigger displaced particles

• Fully commissioned by the end of 2018 data taking
3/25/2019 3

Phase II: Efficiency with High Pileup
• 200 pileup single muon sample
• Matched muons with L1 track PT > 20 GeV
• Prompt KBMTF maintains higher efficiency

3/25/2019 10

Phase II: Rates at 200 pileup

• Similar behavior to zero-bias data
• Rates scale ∼linearly with pileup, as expected

3/25/2019 11

◀ High efficiency
maintained at PU 200

≈20 kHz rate 
@ 20 GeV threshold:

standalone muon
trigger ▶︎

20UPGRADING THE LEVEL-1 TRIGGER (BEFORE)

Global Trigger

ECAL HCAL  
HB/HE µHTR

HCAL
HF µHTR

Calo Trigger Layer-1

Calo Trigger Layer-2

Calorimeter Trigger

~4μs
 Sorting/Merging Layer 

Track Finder Layer

Muon Port
Card

CSC RPC

Splitters

Muon Trigger

DT

TwinMux 
fan-out

Link Board

CPPF 
fan-out

Endcap Overlap Barrel

Endcap Overlap Barrel

Global Muon
Trigger

21UPGRADING THE LEVEL-1 TRIGGER (AFTER)

Global Trigger

ECAL HCAL  
HB/HE µHTR

HCAL
HF µHTR

Calo Trigger Layer-1

Calo Trigger Layer-2

Calorimeter Trigger

~4μs
 Sorting/Merging Layer 

Track Finder Layer

Muon Port
Card

CSC RPC

Splitters

Muon Trigger

DT

TwinMux 
fan-out

Link Board

CPPF 
fan-out

Endcap Overlap Barrel

Endcap Overlap Barrel

Global Muon
Trigger

 GEM +  
 iRPC

Global Trigger

M
ax

:
1
2
.5

μs

Track Trigger
Outer Tracker

Track Finder

Trigger Primitive
Generator

Endcap Calo

Endcap Calo
Trigger Primitive

Generator

Correlator Trigger

Global Trigger

Muon Port
Card

CSC RPC

Splitters

ECAL HCAL 
 HB

HCAL 
 HF

Barrel Calorimeter Trigger

Muon Trigger

DT

fan-out

Calorimeter Trigger

Link Board

fan-out

single xtal

Muon Track Finding/Sorting/Merging

Endcap Overlap Barrel

21

More and better information available in the Level-1 trigger! What can we do with it?

