Olivier Martineau for the GRAND collaboration, Townhall KM3NeT meeting (Marseille, December 19, 2019)

http://grand.cnrs.fr/

The Giant Radio Array for Neutrino Detection and the KM3NeT connexion

Why UHE neutrinos?

- «Cleanest probe» of the Universe (no deflection, no attenuation, hadronic...).
- Direct link to UHECRs (5% of proton primary energy goes into cosmogenic neutrinos)
- Stretches detection reach to EeV range

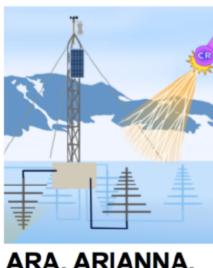
http://grand.cnrs.fr/

excellent combination with KM3NeT to constrain models.

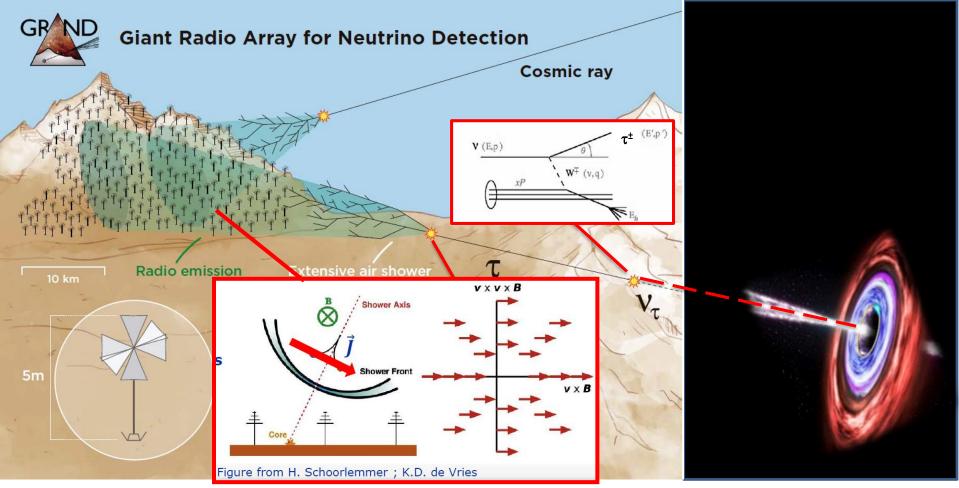
Future project overview

complementarity, sensitivity to neutrino sources "precision frontier"


sensitivity at EeV and beyond "energy frontier"


Present neutrino detectors

KM3NeT, GVD

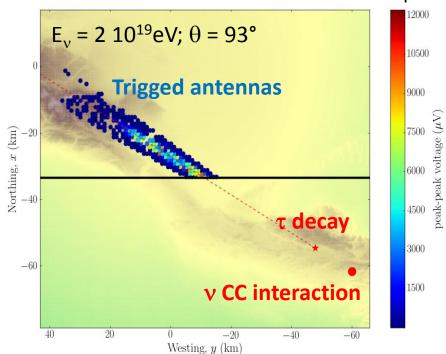

sensitivity at PeV energies "intensity frontier"

ARA, ARIANNA, **EVA, GRAND**

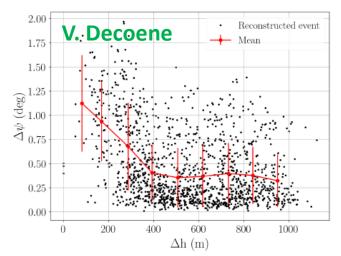
IceCube-Gen2

- Detection principle:
 - v-induced tau decays in atmosphere generate ~horizontal extensive air showers [Fargion 9906450]
- Very indirect process \Leftrightarrow very unlikely \otimes low flux \Rightarrow need a **GIANT** detector.
- Earth opaque to neutrinos at these energies. The tau particle has to be produced less than ~100km from Earth surface in order to emerge → short underground travels → Earth-skimming trajectories.

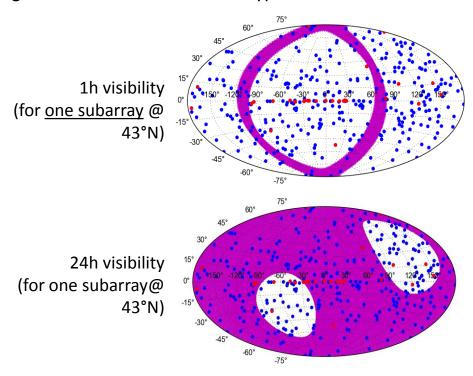
Radio detection of very inclined showers


The GRAND proposal

 Network of o(20) subarrays of o(10000) antennas with sparse density (1/km²) at various favorable locations around the world (« hotspots »)

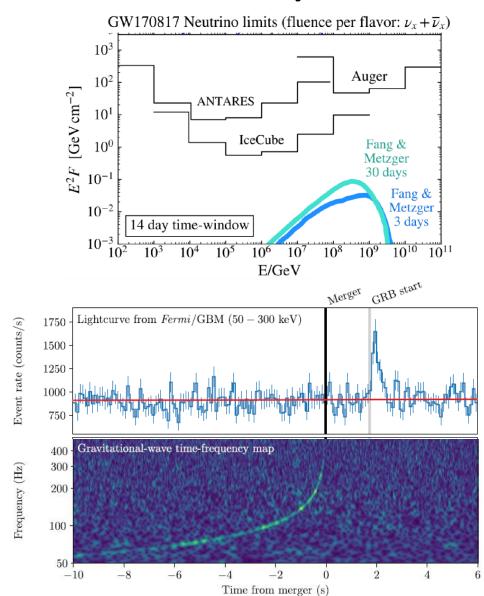

4500 4000 50 Northing, x (km) 3500 3000 10 000km² 2500 **HotSpot1** 2000 1500 -501000 -5050 Westing, y (km)

A simulated neutrino event in a GRAND hotspot


10^{-8} 10^{-8} 10^{-8} 10^{-8} 10^{-9} 10^{-10}

Also: <0.5° angular resolution expected thangs to topography & shower extension (in progress)

GRAND science case


- GRAND10k (10'000 km²) in IceCube2015 range.
- Aiming at ~20 such subarrays deployed on areas with favorable topography at different locations in the world → GRAND200k (20x10 000 km²)
- Sensitivity of full array good enough for GRAND to detect cosmogenic neutrinos for standard hypothesis

→ ~ full sky coverage in 24h time window

GRAND & multimessenger, time-domain astronomy

- « Large » sky coverage
- Passive detector (ie no pointing)
- Hope for fast (~online) reconstruction
- → Neutrino alerts achiveable within o(10)seconds?

The road to GRAND

GRANDProto300

GRANDProto35

GRAND10k

GRAND200k

2018

2020

2025

203X

standalone radio array: test efficiency & background rejection standalone radio array of very inclined showers $(\theta_z>70^\circ)$ from cosmic rays $(>10^{16.5} \, eV)$

+ ground array to do UHECR astro/hadronic physics first GRAND subarray, sensitivity comparable to ARA/ARIANNA on similar time scale, allowing discovery of EeV neutrinos for optimistic fluxes

first neutrino detection at 10¹⁸ eV and/or neutrino astronomy!

35 radio antennas 21 scintillators

 300 HorizonAntennas over 300 km²

- Fast DAQ (AERA+ GRANDproto35 analog stage)
- Solar panels (day use) + WiFi data transfer
- Ground array (à la HAWC/Auger)

DAQ with discrete elements, but mature design for trigger, data transfer, consumption

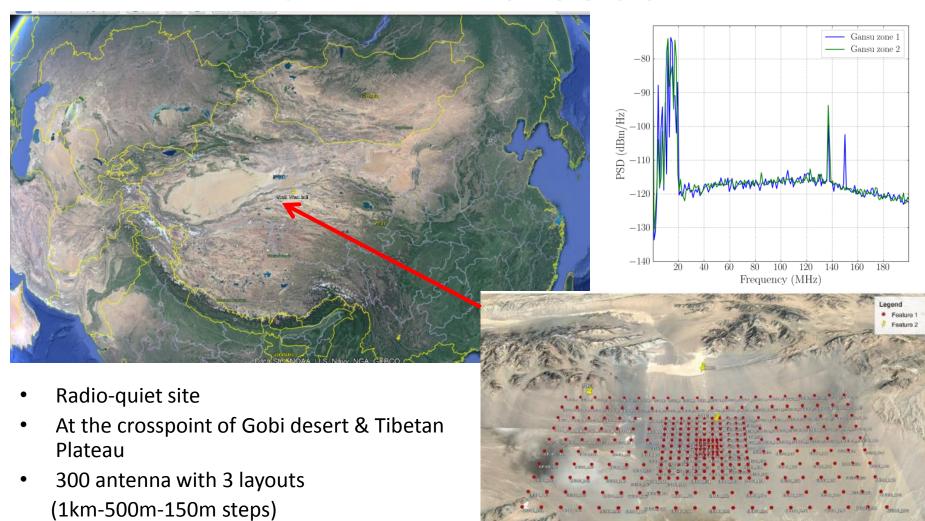
200,000 antennas over 200,000 km², ~ 20 hotspots of 10k antennas, possibly in different continents

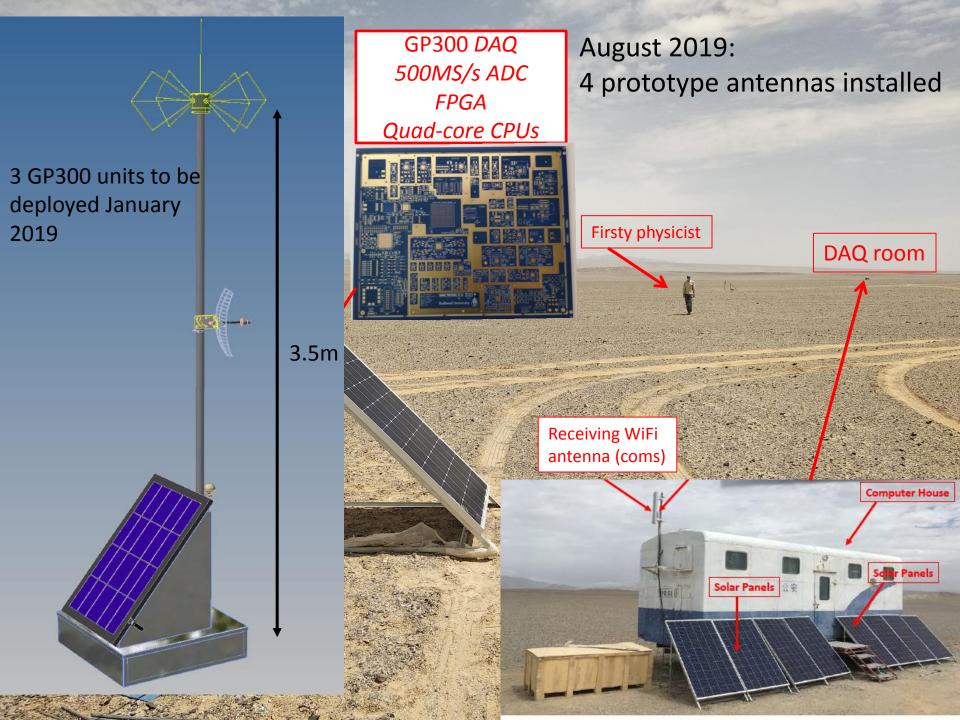
Industrial scale allows to cut down costs: 500€/unit

→ 200M€ in total

160k€, fully funded by NAOC+IHEP, deployment ongoing @ Ulastai

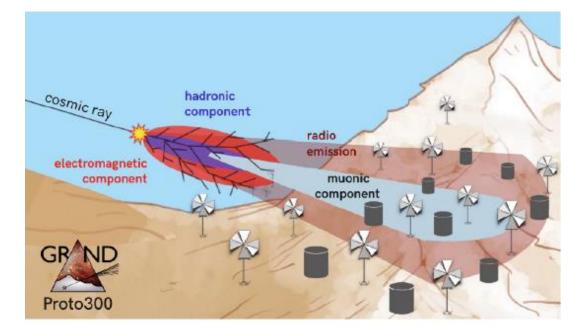
1.3 M€ to be deployed in 2020 1500€ / detection unit

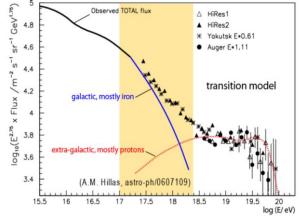

ASIC

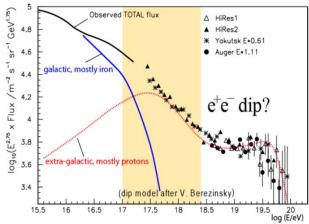

Cost ~10M€ → few 10€/board Consomption < 1W Reliability

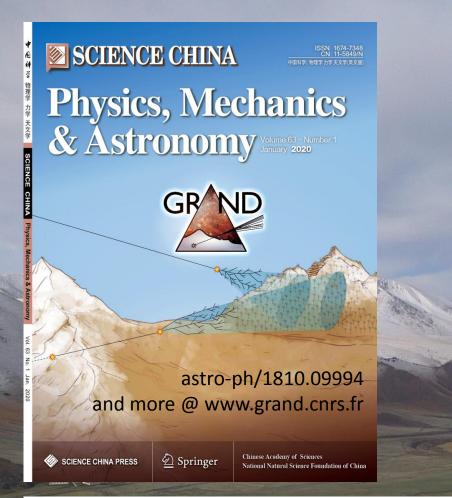
Goals

Setup


GRANDProto300






GRANDProto300 goals

- Demonstrate autonomous radiodetection of air showers
- Physics of air showers*
- Physics of CRs at the Gal-Extragal transition*
- *: if radio array complemented with ground detector

The GRAND collaboration

MoU in preparation between

IAP

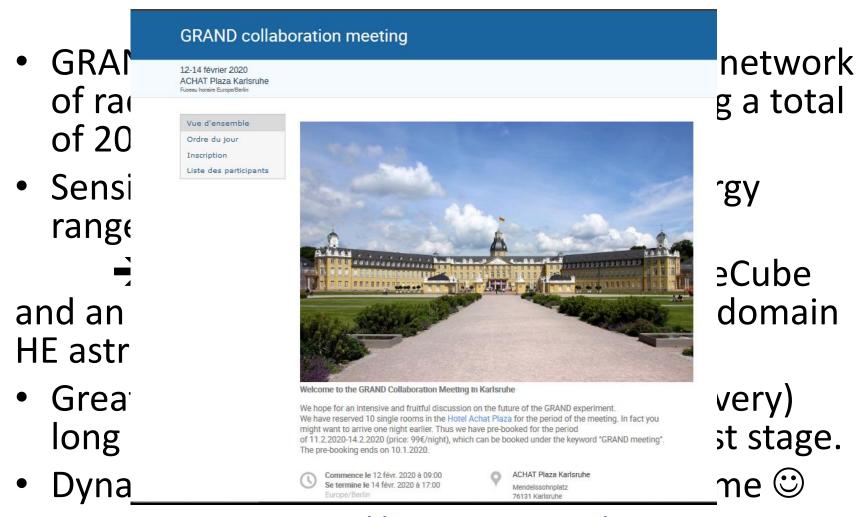
KIT

Nanjing U.

NAOC

Penn State U.

Radboud U. (Nijmegen)



U. Federal Rio

Author list

Jaime Álvarez-Muñiz¹, Rafael Alves Batista^{2,3}, Aswathi Balagopal V.⁴, Julien Bolmont⁵, Mauricio Bustamante^{6,7,8,†}, Washington Carvalho Jr.⁹, Didier Charrier¹⁰, Ismaël Cognard^{11,12}, Valentin Decoene¹³, Peter B. Denton⁶, Sijbrand De Jong^{14,15}, Krijn D. De Vries¹⁶, Ralph Engel¹⁷, Ke Fang^{18,19,20}, Chad Finley^{21,22}, Stefano Gabici²³, QuanBu Gou²⁴, Junhua Gu²⁵, Claire Guépin¹³, Hongbo Hu²⁴, Yan Huang²⁵, Kumiko Kotera^{13,26,*}, Sandra Le Coz²⁵, Jean-Philippe Lenain⁵, Guoliang Lü²⁷, Olivier Martineau-Huynh^{5,25,*}, Miguel Mostafá^{28,29,30}, Fabrice Mottez³¹, Kohta Murase^{28,29,30}, Valentin Niess³², Foteini Oikonomou^{33,28,29,30}, Tanguy Pierog¹⁷, Xiangli Qian³⁴, Bo Qin²⁵, Duan Ran²⁵, Nicolas Renault-Tinacci¹³, Frank G. Schröder^{35,17}, Fabian Schüssler³⁶, Cyril Tasse³⁷, Charles Timmermans^{14,15}, Matías Tueros³⁸, Xiangping Wu^{39,25,*}, Philippe Zarka⁴⁰, Andreas Zech³¹, B. Theodore Zhang^{41,42}, Jianli Zhang²⁵, Yi Zhang²⁴, Qian Zheng^{43,24}, Anne Zilles¹³

Take-away message

Read more at http://grand.cnrs.fr/