Olivier Martineau for the GRAND collaboration, Townhall KM3NeT meeting (Marseille, December 19, 2019) http://grand.cnrs.fr/ ### The Giant Radio Array for Neutrino Detection and the KM3NeT connexion ### Why UHE neutrinos? - «Cleanest probe» of the Universe (no deflection, no attenuation, hadronic...). - Direct link to UHECRs (5% of proton primary energy goes into cosmogenic neutrinos) - Stretches detection reach to EeV range http://grand.cnrs.fr/ excellent combination with KM3NeT to constrain models. ### Future project overview complementarity, sensitivity to neutrino sources "precision frontier" sensitivity at EeV and beyond "energy frontier" Present neutrino detectors KM3NeT, GVD sensitivity at PeV energies "intensity frontier" ARA, ARIANNA, **EVA, GRAND** IceCube-Gen2 - Detection principle: - v-induced tau decays in atmosphere generate ~horizontal extensive air showers [Fargion 9906450] - Very indirect process \Leftrightarrow very unlikely \otimes low flux \Rightarrow need a **GIANT** detector. - Earth opaque to neutrinos at these energies. The tau particle has to be produced less than ~100km from Earth surface in order to emerge → short underground travels → Earth-skimming trajectories. # Radio detection of very inclined showers ### The GRAND proposal Network of o(20) subarrays of o(10000) antennas with sparse density (1/km²) at various favorable locations around the world (« hotspots ») #### 4500 4000 50 Northing, x (km) 3500 3000 10 000km² 2500 **HotSpot1** 2000 1500 -501000 -5050 Westing, y (km) #### A simulated neutrino event in a GRAND hotspot # 10^{-8} 10^{-8} 10^{-8} 10^{-8} 10^{-9} 10^{-10} Also: <0.5° angular resolution expected thangs to topography & shower extension (in progress) ### **GRAND** science case - GRAND10k (10'000 km²) in IceCube2015 range. - Aiming at ~20 such subarrays deployed on areas with favorable topography at different locations in the world → GRAND200k (20x10 000 km²) - Sensitivity of full array good enough for GRAND to detect cosmogenic neutrinos for standard hypothesis → ~ full sky coverage in 24h time window # GRAND & multimessenger, time-domain astronomy - « Large » sky coverage - Passive detector (ie no pointing) - Hope for fast (~online) reconstruction - → Neutrino alerts achiveable within o(10)seconds? ### The road to GRAND GRANDProto300 GRANDProto35 GRAND10k GRAND200k 2018 2020 2025 203X standalone radio array: test efficiency & background rejection standalone radio array of very inclined showers $(\theta_z>70^\circ)$ from cosmic rays $(>10^{16.5} \, eV)$ + ground array to do UHECR astro/hadronic physics first GRAND subarray, sensitivity comparable to ARA/ARIANNA on similar time scale, allowing discovery of EeV neutrinos for optimistic fluxes first neutrino detection at 10¹⁸ eV and/or neutrino astronomy! 35 radio antennas 21 scintillators 300 HorizonAntennas over 300 km² - Fast DAQ (AERA+ GRANDproto35 analog stage) - Solar panels (day use) + WiFi data transfer - Ground array (à la HAWC/Auger) DAQ with discrete elements, but mature design for trigger, data transfer, consumption 200,000 antennas over 200,000 km², ~ 20 hotspots of 10k antennas, possibly in different continents Industrial scale allows to cut down costs: 500€/unit → 200M€ in total 160k€, fully funded by NAOC+IHEP, deployment ongoing @ Ulastai 1.3 M€ to be deployed in 2020 1500€ / detection unit ASIC Cost ~10M€ → few 10€/board Consomption < 1W Reliability Goals Setup ### **GRANDProto300** ### **GRANDProto300** goals - Demonstrate autonomous radiodetection of air showers - Physics of air showers* - Physics of CRs at the Gal-Extragal transition* - *: if radio array complemented with ground detector # The GRAND collaboration ### **MoU in preparation between** **IAP** KIT Nanjing U. NAOC Penn State U. Radboud U. (Nijmegen) U. Federal Rio #### Author list Jaime Álvarez-Muñiz¹, Rafael Alves Batista^{2,3}, Aswathi Balagopal V.⁴, Julien Bolmont⁵, Mauricio Bustamante^{6,7,8,†}, Washington Carvalho Jr.⁹, Didier Charrier¹⁰, Ismaël Cognard^{11,12}, Valentin Decoene¹³, Peter B. Denton⁶, Sijbrand De Jong^{14,15}, Krijn D. De Vries¹⁶, Ralph Engel¹⁷, Ke Fang^{18,19,20}, Chad Finley^{21,22}, Stefano Gabici²³, QuanBu Gou²⁴, Junhua Gu²⁵, Claire Guépin¹³, Hongbo Hu²⁴, Yan Huang²⁵, Kumiko Kotera^{13,26,*}, Sandra Le Coz²⁵, Jean-Philippe Lenain⁵, Guoliang Lü²⁷, Olivier Martineau-Huynh^{5,25,*}, Miguel Mostafá^{28,29,30}, Fabrice Mottez³¹, Kohta Murase^{28,29,30}, Valentin Niess³², Foteini Oikonomou^{33,28,29,30}, Tanguy Pierog¹⁷, Xiangli Qian³⁴, Bo Qin²⁵, Duan Ran²⁵, Nicolas Renault-Tinacci¹³, Frank G. Schröder^{35,17}, Fabian Schüssler³⁶, Cyril Tasse³⁷, Charles Timmermans^{14,15}, Matías Tueros³⁸, Xiangping Wu^{39,25,*}, Philippe Zarka⁴⁰, Andreas Zech³¹, B. Theodore Zhang^{41,42}, Jianli Zhang²⁵, Yi Zhang²⁴, Qian Zheng^{43,24}, Anne Zilles¹³ ## Take-away message Read more at http://grand.cnrs.fr/