Probing Hadronic Interactions with measurements from the Pierre Auger Observatory

<u>Belén Andrada</u> – on behalf of the Pierre Auger Collaboration belen.andrada@iteda.cnea.gov.ar

Ultra-high-energy cosmic rays

UHECR provide access to hadronic interactions at energies well beyond those achievable by human-made accelerators.

But cannot be measured directly...

Extensive air showers

Primary CR + atmospheric nuclei

→ cascade of secondary particles

• air

Components:

Muon mainly from the decay of charged pions
+ photo-production

EM mainly from the decay of neutral pions

- + muon decay
- + low energy pion decay

Extensive air showers

Primary CR + atmospheric nuclei

→ cascade of secondary particles

• air

Components:

Muon mainly from the decay of charged pions
+ photo-production

EM mainly from the decay of neutral pions

- + muon decay
- + low energy pion decay

Observables:

 X_{max} – depth of maximum development of the shower in the atmosphere

 N_{μ} – number of muons at ground

 $N_{\mu}^{Fe} > N_{\mu}^{p}$

The Pierre Auger Observatory

Surface Detector (SD):

>1600 water Cherenkov det. 100% duty cycle

SD-1500

 $3000 \text{ km}^2 - \text{E} > 10^{18.5} \text{ eV}$

SD-750

 $27 \text{ km}^2 - \text{E} > 10^{17.5} \text{ eV}$

SD-433

 $1.9 \text{ km}^2 - \text{E} > 10^{16.5} \text{ eV}$

Fluorescence Detector (FD):

4 sites

27 telescopes

 $E > 10^{17} \text{ eV}$

15% duty cycle

Location: Malargüe, Mendoza, Argentina.

Hybrid detector

Signal [VEM peak]

FD: - calorimetric measurement of E

- direct measurement of X_{max}

<u>SD:</u> - energy estimator via $S(r_{opt})$

- composition sensitive time structure

μ±

e±γ

t [25 ns]

Time

40

structure

Signal [VEM

 $E \propto \int \frac{dE}{dX} dX$

Hybrid muon measurement

Energy: $10^{18.8} - 10^{19.2}$ eV Zenith angle: $0^{\circ} - 60^{\circ}$ 411 high quality events

Longitudinal profile (EM): well reproduced by simulations

Lateral distribution (EM + Muon): simulations produce systematically smaller signals than those found in data

Hybrid muon measurement

ML fit adjusting the EM and Muon contributions to the signal

$$S_{
m resc} = R_E \; S_{
m EM} + R_{
m had} \; R_E^{lpha} \; S_{
m had}$$
 $lpha \simeq 0.9$ $R_{\mu} pprox 0.93 \; R_E^{0.9} \; R_{
m had} + 0.07 \; R_E$

- Observed muon signal larger than predicted by models (1.3 - 1.6)

Model	R_E	$R_{ m had}$
QII-04 p	$1.09 \pm 0.08 \pm 0.09$	$1.59 \pm 0.17 \pm 0.09$
QII-04 mixed	$1.00 \pm 0.08 \pm 0.11$	$1.61 \pm 0.18 \pm 0.11$
EPOS p	$1.04 \pm 0.08 \pm 0.08$	$1.45 \pm 0.16 \pm 0.08$
EPOS mixed	$1.00 \pm 0.07 \pm 0.08$	$1.33 \pm 0.13 \pm 0.09$

Phys. Rev. Lett. 177, 192001 (2016)

Muons in highly inclined showers

Energy > 4x10¹⁸ eV Zenith angle: 62° – 80° 174 hybrid events

- EM component mostly absorbed in the atmosphere
- Muon component measured with the SD
- Energy measured with the FD

Higher abundance of muons in data than in predictions from hadronic models.

Compatible with iron primaries.

Phys. Rev. D 91, 032003 (2015)

Direct measurements with the AMIGA Underground Muon Detector

 30 m^2 scintillators buried at 2.3 m underground at 7 SD locations.

Energy: $2x10^{17} - 2x10^{18} \text{ eV}$

Zenith angle: 0° – 45°

1742 events

- Lower energy measurements (closer to LHC data)
- First direct measurement of the muon content

Larger muon content in data than in predictions from hadronic models, but compatible with iron primaries.

750 m

What about composition information?

Highly inclined events + UMD measurements

Composition information can be inferred from depth of shower maximum X_{max} measurements (FD) via hadronic interaction models.

Data is in tension with all model predictions.

[g/cm²]

700 X max

E[eV]

data $\pm \sigma_{\text{stat}}$ ± svst.

Fluctuations in the number of muons

Energy > 4x10¹⁸ eV Zenith angle: 62° – 80° 281 hybrid events

Fluctuations in the number of muons are well reproduced by models.

All the available information points to a small effect at every stage of the shower (rather than a discrepancy in the first interaction).

Other Auger results on Muon Deficit

Muon Production Depth

Risetime measurement

What about other experiments?

A Working Group on Hadronic Interactions and Shower Physics (WHISP) was created in 2018.

Combined analysis of Muon Density measurements from air shower experiments with different:

- measurement techniques
- zenith angle ranges
- energy thresholds

Growing muon deficit in the simulations above 10^{16} eV (8 σ significance).

Summary

- UHECR allow access to interactions in high energy regions unavailable at human-made accelerators.
- Auger's hybrid design enables measurements from both EM and Muon components of air showers.
- Estimates of mass composition from EM component are in conflict with measurements more sensitive to the Muon component
 - → muon deficit in simulations (from up to date hadronic interaction models)
- AugerPrime: upgrade of the Auger Observatory to disentangle EM and Muon components
 - → increase sensitivity to hadronic interactions and mass composition.

Thanks!

BACKUP

X_{max} measurements

FD - most direct measurement of

- → depth of shower maximum
- → fluctuations

Muon Production Depth

Assumptions:

- muons are produced along the shower axis
- muons have straight trajectories

Given shower geometry and arrival times, muons can be mapped to its production depth.

Muon Production Depth

Energy > 2x10¹⁹ eV Zenith angle: 55°- 65° 481 SD events

Data shows a flatter trend than pure primaries. X^{μ}_{max} can be used to constrain the models.

 X_{max} and X^{μ}_{max} results are incompatible. No model provides a consistent description of EM and MPD profiles.

Phys. Rev. D 90, 012012 (2014)

Risetime Measurement

- SD signals in vertical events.
- Risetime = time between signal reaching 10% and 50% of total signal used.
- Sensitive both to EM and Muon components

Risetime Measurement

Energy > 10^{17.5} eV Zenith angle < 45° 481 SD events

Measurements suggest an increase of the mean mass with energy (if hadronic models are correct).

Composition from X_{max} (EM) and risetime measurements (EM+Muon) differ but follow a similar trend.

