Jet-based TMD

measurements with H1 data

Benjamin Nachman

Lawrence Berkeley National Laboratory
@ @bpnachman on behalf of the H 1 Collaboration
(S) bnachman

International Symposium on Multi-particle Dynamics July 14, 2021

BERKELEY INSTITUTE FOR DATA SCIENCE

H1 @ HERA

T. Janssen gave a great introduction to H1 \& HERA yesterday

For this talk: 2006-2007 data, $136 \mathrm{pb}^{-1}, 320 \mathrm{GeV}$

I'll present a measurement of the electron-jet inbalance

Why electron-jet imbalance?

Born-level configuration, electron and jet are back-to-back

Typically, jets are studied in the Breit frame, where the Born-level configuration is discarded

However, jet production in the lab frame can be useful for probing Transverse Momentum

Dependent (TMD) Parton Distribution Functions (PDFs)

Jets at H1

Energy flow algorithm (HFS) combines information from tracker and calorimeters

Neural network-based energy regression

1\% jet energy scale uncertainty; 0.5-1\% lepton energy scale uncertainty

Jets at H1

Energy flow algorithm (HFS) combines information from tracker and calorimeters

Neural network-based energy regression
1% jet energy scale uncertainty; 0.5-1\% lepton energy scale uncertainty

Challenge: unfold multidimensional phase space

Jets at H1

Energy flow algorithm (HFS)

 combines information from
Solution: use deep learning!

...can do unbinned, high (and variable-)dimensional unfolding

Challenge: unfold multidimensional phase space

Unfold by iterating: OmniFold

Detector-level Particle-level

Unfold by iterating: OmniFold

Unfold by iterating: OmniFold

Measured

Ideal

Detector effects are simulated with
Geant3 + H1 custom simulation code

Unfold by iterating: OmniFold

Our default simulations use RAPGAP and DJANGOH

Unfold by iterating: OmniFold

Measured

Ideal

Step 2:
Reweight Gen.

Unfold by iterating: OmniFold

Measured

Ideal

Unfold by iterating: OmniFold

Ideal

Iteration 2

Unfold by iterating: OmniFold

Measured

Ideal

Iteration 2

Unfold by iterating: OmniFold

Measured

Step 2:
Reweight Gen.
Iteration 2
Ideal

Unfold by iterating: OmniFold

Measured

Ideal

Iteration 2

Unfold by iterating: OmniFold

Unfold by iterating: OmniFold

Measured

Unfold by iterating: OmniFold

OmniFold is:

- Unbinned
- Maximum likelihood
- Full phase space (compute observables post-facto)
- Improves the resolution from auxiliary features

Unfold by iterating: OmniFold

OmniFold is:

- Unbinned
- Maximum likelihood
- Full phase space (compute observables post-facto)
- Improves the resolution from auxiliary features

In this measurement: simultaneously unfold lepton and jet kinematics and report binned spectra for jet $\mathrm{p}_{\mathrm{T}}, \Delta \phi, \mathrm{q}_{\mathrm{T}} / \mathrm{Q}$, and jet η

Classification for reweighting

Neural networks are naturally unbinned and readily process highdimensional data.

We use a trick whereby classifiers can be repurposed as reweighters
N.B. the distribution is binned for illustration, but the
 reweighting is unbinned.

Classification for reweighting

All of these distributions are simultaneously reweighted!

Unfold by iterating: OmniFold

Detector-level Particle-level

OmniFolding ep simulations

We see excellent closure for the full phase space!

Preliminary Results

Measurement of lepton-jet correlations in high Q^{2} neutral-current DIS with the H1 detector at HERA

The H1 Collaboration
https://www-h1.desy.de/h1/www/publications/ htmlsplit/H1prelim-21-031.long.html

Preliminary Results

see Sec. 9 in our note for theory citations

Excellent agreement with fixed order at high qt, excellent agreement with TMD prediction at low q_{T}.

Preliminary Results

see Sec. 9 in our note for theory citations

Parton shower Monte Carlo programs also provide excellent agreement with the data across the spectra.

Conclusions and outlook

Today, I have presented the first ML-based unfolding with collider data

This is the start of an exciting program to advance our study of QCD into higher dimensions

This particular measurement has important constraining power for TMD PDFs and provides important input to planning and design for the future EIC

Backup

Unfold by iterating: OmniFold

Ideal

Unfold by iterating: OmniFold

Unfold by iterating: OmniFold

After iteration 1

Measured

Ideal

Unfold by iterating: OmniFold

After iteration 1

Ideal

Unfold by iterating: OmniFold

After iteration 1

Ideal

Unfold by iterating: OmniFold

After iteration 1

Ideal

Unfold by iterating: OmniFold

After iteration 1

Ideal

Unfold by iterating: OmniFold

After iteration 2

Unfold by iterating: OmniFold

After iteration ∞

