

Recent results on hyperon pair production and nucleon time-like form factors at BESIII

ALESSIO MANGONI - SIMONE PACETTI

ON BEHALF OF BESIII COLLABORATION

Istituto Nazionale di Fisica Nucleare - Sezione di Perugia BESIII Collaboration

Agenda

- The BESIII experiment
- Experimental results

 Nucleon electromagnetic form factors
- Experimental results

 Hyperon pair production
- Summary

The BESIII experiment

Beijing Electron-Positron Collider (started in 1984, first operation in 1989, upgrade to BEPCII in 2008) BEPCII is a double ring machine with beam energy tunable (RECORD ECM 4.946 GeV in feb 2021)

The BESIII experiment

Physics program:

- Tests of electroweak interactions
- Studies of light hadron spectroscopy and decay properties
- Studies of the production and decay properties of the main charmonia
- \bigcirc Studies of charm and au-physics
- Search for glueballs, quark-hybrids, multi-quark states and other exotic states
- Precision measurements of QCD and CKM parameters and search for new physics

Remarkable results:

- **EXECUTE** BESIII accumulates 10 billion J/ψ events (2019-02-11)
- **EXECUTE:** BESIII observes polarization of baryons in J/ψ decay (2019-05-07)

(based on 1.3 billions of J/ψ)

Nature Phys. 15 (2019) 631-634

About 500 members
78 institution
16 countries

BESIII Detector

Nucleon electromagnetic form factors

The nucleon electromagnetic (EM) form factors (FFs) are Lorentz scalar functions of q^2 (squared four-momentum transfer of the photon)

Space-like FFs are related to the elastic scattering process

$$e^-N \rightarrow e^-N$$

Time-like FFs are related to the annihilation processes $e^+e^- \leftrightarrow N\overline{N}$

EM FFs give informations about the internal structure of nucleons

$$\Gamma^{\mu} = F_1(q^2)\gamma^{\mu} - \frac{\sigma^{\mu\nu}q_{\nu}}{2m}F_2(q^2)$$

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{4M_N} F_2(q^2)$$

$$G_M(q^2) = F_1(q^2) + F_2(q^2)$$

 F_1 and F_2 are the Dirac and Pauli FFs

Study of the process $e^+e^- \to p\overline{p}$ at BESIII

Accurate measurement of cross section from 2.0 to 3.08 GeV (22 points)

Phys.Rev.Lett. 124, 042001 (2020)

energy-scan technique

 $|\mathit{G}_{E}|/|\mathit{G}_{M}|$ determined with high accuracy

Study of the process $e^+e^- \to p\overline{p}$ at BESIII

Phys.Rev.Lett. 124, 042001 (2020)

$|G_E|$ measured for the first time

 $|G_{M}|$ determined with high accuracy

Study of the process $e^+e^- \to p\overline{p}$ at BESIII

Phys.Rev.Lett. 124, 042001 (2020)

Oscillating behavior observed in effective FF as function of relative momentum p between proton and anti-proton

Observed also by further BESIII analysis and BABAR experiment

Possible explanations:

- resonant structures; Phys.Rev.D 92 (2015) 3, 034018
- interference effects in the final state.

Phys.Rev.C 103 (2021) 3, 035203

Study of the process $e^+e^- \to p\overline{p}$ at BESIII

Phys.Lett.B 817, 136328 (2021)

initial-state-radiation (ISR) technique

Measurement of cross section from 3.773 to 4.600 GeV (7 points)

Study of the process $e^+e^- \rightarrow n\overline{n}$ at BESIII

Measurement of cross section from 2.0 to 3.08 GeV (18 points)

Best precision for the cross section of 8.1% at energy 2.396 GeV

arXiv:2103.12486 (2021)

Study of the process $e^+e^- \rightarrow n\overline{n}$ at BESIII

Measurement of cross section from 2.0 to 3.08 GeV (18 points)

Oscillation observed in the effective FF of the neutron

$$G_{osc}(q^2) = |G| - G_D,$$
 $G_D(q^2) = \frac{\mathcal{A}_n}{(1 - \frac{q^2}{0.71(\text{GeV}^2)})^2}$

arXiv:2103.12486 (2021)

11

Experimental resultsHyperon pair production

Hyperons are ideal probes for studying the strong interaction in the transition region where the regime is not completely perturbative; Phys.Rev.Lett. 125 (2020) 5, 052004

The polarization of Λ baryons in the process $e^+e^- \to J/\psi \to \Lambda \overline{\Lambda}$ was recently measured by BESIII; Nature Phys. 15 (2019) 631-634

Considering the process $e^+e^- \to J/\psi \to \Sigma^+(p\pi^0)\overline{\Sigma}^-(\overline{p}\pi^0)$, the polarization of Σ hyperons can be determined analyzing the two-body weak decays $\Sigma^+ \to p\pi^0$ and $\overline{\Sigma}^- \to \overline{p}\pi^0$

The $e^+e^- o \psi o \Sigma^+\overline{\Sigma}{}^-$ production process is described by the psionic electric and magnetic FFs G_E^ψ and $G_{M'}^\psi$ related to the parameters α_ψ and $\Delta\Phi$

 $\alpha_{\!\scriptscriptstyle W} o$ angular decay asymmetry parameter

 $\Delta\Phi$ o relative phase between FFs

Experimental resultsHyperon pair production

- Determination of the polarization parameters $lpha_0$, \overline{lpha}_0 and the FFs relative phase $\Delta\Phi$
- The parameter $\overline{\alpha}_0 = 0.990 \pm 0.037$ (stat) ± 0.011 (syst) has been measured for the first time

The FFs relative phases are determined to be

$$\Delta\Phi_{J/\psi} = (-15.5 \pm 0.7 \text{ (stat)} \pm 0.5 \text{ (syst)})^{\circ}$$

$$\Delta\Phi_{\psi(2S)} = (21.7 \pm 4.0 \text{ (stat)} \pm 0.8 \text{ (syst)})^{\circ}$$

The obtained decay asymmetry parameters are $\alpha_0 = -0.998 \pm 0.037 \, (\text{stat}) \pm 0.009 \, (\text{syst})$ $\overline{\alpha}_0 = 0.990 \pm 0.037 \, (\text{stat}) \pm 0.011 \, (\text{syst})$ where $\overline{\alpha}_0$ has been measured for the first time

Based on $1310.6 \times 10^6 J/\psi$ and $448.1 \times 10^6 \psi(2S)$ events collected by the BESIII collaboration

Phys.Rev.Lett. 125 (2020) 5, 052004

Parameter	Measured value
$lpha_{J/\psi}$	$-0.508 \pm 0.006 \pm 0.004$
$\Delta \Phi_{J/\psi}$	$-0.270 \pm 0.012 \pm 0.009$
$lpha_{\psi'}$	$0.682 \pm 0.03 \pm 0.011$
$\Delta\Phi_{\psi'}$	$0.379 \pm 0.07 \pm 0.014$
$lpha_0$	$-0.998 \pm 0.037 \pm 0.009$
$ar{lpha}_0$	$0.990 \pm 0.037 \pm 0.011$

Experimental resultsHyperon pair production

Study of the processes $e^+e^-\to \Sigma^+\overline{\Sigma}^-$ and $e^+e^-\to \Sigma^-\overline{\Sigma}^+$ at BESIII

Measurements for CM energies from 2.3864 to 3.0200 GeV

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta C |G_M|^2}{4s} \left[1 + \cos^2 \theta + \frac{1}{\tau} \left| \frac{G_E}{G_M} \right|^2 \sin^2 \theta \right]$$

Phys.Lett.B 125 (2021) 814, 136110

$$\Sigma^+ \to uus$$
 $p \to uud$
 $\Sigma^- \to dds$ $n \to udd$

FFs ratio of Σ hyperons could provide guidance for the nucleons

$$\beta = \sqrt{1 - \frac{4m^2}{s}} \qquad \tau = \frac{s}{4m^2}$$

m is the mass of the baryon in the final state ${\it C}$ is the Coulomb correction factor

Experimental results

Hyperon pair production

Phys.Lett.B 125 (2021) 814, 136110

Study of the processes
$$e^+e^-\to \Sigma^+\overline{\Sigma}^-$$
 and $e^+e^-\to \Sigma^-\overline{\Sigma}^+$ at BESIII

$$\Sigma^+ \rightarrow |G_E/G_M| = 1.83 \pm 0.26$$
 is significantly higher than 1

First time measurement for the cross section in the off-resonance region

Cross sections near threshold disagree with the pointlike expectations as has been seen for the proton

Eur.Phys.J.A 39 (2009) 315-321

Eur.Phys.J.A 48 (2012) 33

Phys.Rev.D 87, 092005 (2013)

Phys.Lett.B 759, 634 (2016)

$$\frac{\sigma^{\text{Born}}(e^{+}e^{-} \to \Sigma^{+}\overline{\Sigma}^{-})}{\sigma^{\text{Born}}(e^{+}e^{-} \to \Sigma^{-}\overline{\Sigma}^{+})} = 9.7 \pm 1.3$$

consistent with the prediction of

Phys.Lett.B 799 (2019) 135041

inconsistent with predictions from various models,

Phys.Rept.112, 173 (1984), Rev.Mod.Phys.65, 1199 (1993), Z. Phys.Phys.C42, 569 (1989), Phys.Rev.Lett.91, 232003 (2003), Phys.Rept.409, 1 (2005), Phys.Rev.D 101, 014014 (2020)

Summary

- BESIII can precisely measure the nucleon FFs.
- The $e^+e^- \to p\overline{p}$ process has been studied to obtain the differential cross section, the EM FFs, $|G_E|$ and $|G_M|$, and their ratio $|G_E/G_M|$.
- The moduli of electric and magnetic proton FFs has been measured for the first time for the proton.
- The $e^+e^- \to n\overline{n}$ process has been studied to obtain the cross section and the ratio of EM FFs, $|G_E/G_M|$.
- An oscillating behavior has been observed in the effective FF of proton and neutron.
- The processes of hyperon pairs production can be used to study their polarization, this represents a unique opportunity for studying polarization phenomena.
- ullet BESIII has measured for the first time all the Λ and Σ polarization parameters.