

LIGHT-FLAVOUR PRODUCTION ACROSS DIFFERENT COLLISION SYSTEMS

ENRICO FRAGIACOMO

INFN - TRIESTE

ON BEHALF OF THE ALICE COLLABORATION

THE ALICE COLLABORATION @ LHC

39 countries, 175 institutes, 1025 authors

System	Year(s)	√s _{nn} (TeV)	L _{int}
Pb-Pb	2010, 2011 2015, 2018	2.76 5.02	75 μb ⁻¹ 800 μb ⁻¹
Xe-Xe	2017	5.44	0.3 µb ⁻¹
p-Pb	2013 2016	5.02 5.02, 8.16	15 nb ⁻¹ 3 nb ⁻¹ , 25 nb ⁻¹
pp	2009-2013 2015, 2017 2015-2018	0.9, 2.76, 7, 8 5.02 13	200 µb ⁻¹ , 100 nb ⁻¹ 1.5 pb ⁻¹ , 2.5 pb ⁻¹ 1.3 pb ⁻¹ 36 pb ⁻¹

- Harvest of the past 10 years operation
- Large integrated luminosity in Run 2 allows precise measurements, new observables

THE ALICE DETECTOR

Central barrel: vertexing, tracking, PID, EM calos $|\eta| < 0.9$

Forward detectors: multiplicity, trigger, centrality, time zero

COLLISION EVOLUTION

TEMPERATURE AT HADRONIZATION FROM PARTICLE ABUNDANCES

- → At hadronization the system is close to thermal equilibrium
- → A rapid hadrochemical freeze-out takes place at the phase boundary
- Hadron abundances described by SHM over 9 orders of magnitude!
- Note that also loosely bound objects (light nuclei and hypernuclei) and heavy-flavour hadrons (J/ψ) are described by SHM

DIFFERENTIAL TRANSVERSE MOMENTUM SPECTRA

A variety of hadrons has been measured in wide p_T ranges at different multiplicities

- Spectra become harder with increasing multiplicity (flatten at low p_T), most pronounced for heavier particles \rightarrow expected from collective hydrodynamic expansion (radial flow)
- ☐ Similar hardening of spectra has been also observed in high-multiplicity pp and p-Pb collisions!

MEAN TRANSVERSE MOMENTUM

Mass-dependent hardening manifests itself in $\langle p_T \rangle$ increasing with multiplicity

- Modest hardening of particle spectra with increasing collision energy
- In heavy-ion collisions <p_T> is independent of the size of colliding nuclei (Xe-Xe vs. Pb-Pb)
- In central heavy-ion collisions particles with similar masses have similar values of <p_T>, expected from hydrodynamic evolution
- The mass ordering of <p_T> is violated in peripheral heavy-ion collisions as well as in pp and p-Pb

Steeper increase of $\langle p_T \rangle$ in smaller collision systems

BLAST-WAVE MODEL FITS TO π/K/p SPECTRA

Boltzmann-Gibbs Blast-Wave fits are used to determine parameters of the radial flow:

- T_{kin} kinetic freeze-out temperature
- $<\beta_T>$ transverse flow velocity

Fit parameters are extracted from simultaneous fits to π , K, p spectra

Results are sensitive to fitting range

- $T_{\rm kin}$ decreases, $<\beta_{\rm T}>$ increases with multiplicity
- Consistent results for Pb-Pb and Xe-Xe at similar multiplicities ($T_{kin} \sim 100 \text{ MeV}$)
- $<\beta_T>$ from pp and p-Pb are consistent with each other, but with larger values wrt. heavy ions at similar multiplicities

• $T_{\rm kin}$ stays constant (~ 160 MeV) in pp and slightly decreases in p-Pb

PARTICLE YIELDS IN pp AND p-Pb VS. $dN_{ch}/d\eta$

- Hadron yields increase ~linearly with multiplicity, consistently for pp and p-Pb collisions at different energies
- Hadrochemistry is driven by event activity rather than by collision energy or system size
- Qualitative description by models

10

NUCLEAR MODIFICATION FACTOR, R_{AA}

$$R_{\mathrm{AA}}(p_{\mathrm{T}}) = \frac{1}{\langle N_{\mathrm{coll}} \rangle} \times \frac{\mathrm{d}^2 N_{\mathrm{AA}}/\mathrm{d}p_{\mathrm{T}}\mathrm{d}\eta}{\mathrm{d}^2 N_{\mathrm{pp}}/\mathrm{d}p_{\mathrm{T}}\mathrm{d}\eta}$$

At high $p_T > 8$ GeV/c, production of light hadrons is similarly suppressed

→ No dependence on hadron properties (mass, baryon number, quark content)

At intermediate $2 < p_T < 8 \text{ GeV}/c$:

- mass ordering of R_{AA} for mesons
 - → indication of the radial flow
- baryon-to-meson splitting (proton vs. Ф)
 - → difference in shapes of pp references

 N_{coll} : Total number of nucleon pairs that collide, assuming transparency of the collision

HYDRODYNAMICS OF THE MEDIUM: ANISOTROPIC FLOW

Anisotropies in the initial energy density distribution lead to azimuthal anisotropies in particle production

Depends on EOS and fluid viscosities,

Measured via Fourier expansion

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2 \sum_{\mathrm{n=1}}^{\infty} v_{\mathrm{n}} \cos[n(\varphi - \psi_{\mathrm{n}})]$$

Mass ordering (higher mass \rightarrow lower v_2): interplay between radial and elliptic flow

Higher n_q higher $v_2 \rightarrow$ quark coalescence as dominant particle production mechanism

p/π AND K/π RATIOS

- At similar multiplicities, particle ratios are consistent for different collision systems at different √s_{NN}
- p/π shows a modest decrease with centrality at the LHC wrt to RHIC, consistent with smaller antibaryon-baryon asymmetry at the LHC
- Increasing K/π ratio is consistent with strangeness enhancement

13

HADROCHEMISTRY: RELATIVE ABUNDANCES OF HADRONS

- Smooth evolution of particle production from small to large systems vs. charged-particle multiplicity
- Strangeness production increasing with multiplicity until saturation (grand-canonical plateau) is reached
- Steeper increase for particles with more strangeness content
- High-multiplicity pp: same hadrochemistry as larger (p-Pb, peripheral Pb-Pb) systems
- Common particle production mechanism for all systems?

LIGHT-FLAVOUR RESONANCES PROVES THE LATE HADRON PHASE

Resonances have lifetimes similar to the lifetime of the hadron phase

 → they are subject to regeneration and re-scattering effects

Estimate the duration between chemical and kinetic freeze-out

(fm/c)

 \Box

802 (2020) 135225

Resonance lifetime(fm/c): $\rho(1.3) < K^*(4.2) < \Sigma^*(5.5) < \Lambda^*(12.6) < \Xi^*(21.7) < \varphi(46.4)$

CONCLUSIONS AND OUTLOOK

Harvest from Run 1 + 2 offers:

- Detailed insights into QGP characteristics
- Fundamental advances in QCD at high density

Run 2 + 3 and beyond:

- Major LS2 upgrade on track for pp in 2022
- ▶ In preparation: ITS3, FoCal in LS3
- Ambitious plans for Run 5+: the next generation