

Meena (On behalf of ATLAS and CMS collaboration)

ISMD2021: 50th International Symposium on Multiparticle Dynamics

16th July, 2021

Meena P.U. Chandigarh(IN) ISMD2021 16th July, 2021

Outline

- Study of quark and gluon jet substructure in dijet and Z+jet events from pp collisions (CMS)→ New results
- Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector
- Mass regression of highly-boosted jets using graph neural networks (CMS) → Very new results
- Boosted hadronic vector boson and top quark tagging with ATLAS using Run2 data (ATLAS)
- Summary

Goal: To study jet substructure observables sensitive to quark and gluon as well as the ability of various models to describe these

 $Z(\to \mu\mu)+{\rm jet}$ (quark enriched) selection:

•
$$Z(\mu^+\mu^-)$$
: ≥ 2 muons, $|\eta_\mu| < 2.4$, $p_T^\mu > 26$ GeV, $|m_{\mu^+\mu^-} - m_Z| < 20$ GeV,

- Reconstructed (generator)-level jets (j): \geq 1 jet with p_T > 30 (15) GeV, |y| < 1.7
- Not overlapping with muons of Z

- ullet Z+jet sample ightarrow 64-76% quark jets
- Central and forward dijet jets
 Dominated by 69-72% gluon jets at low
 p_T & 55-68% quark jets at high p_T

Dijet (gluon enriched in central & forward) selection:

- Reconstructed (genrator)-level jets: ≥ 2 jets with p_T > 30 (15) GeV, |y| < 1.7
- $\Delta \phi(j1, j2) > 2$, $|p_T^{j1} p_T^{j2}|/|p_T^{j1} + p_T^{j2}| < 0.3$

- Observables: 5 generalized angularities (LHA, Width, Thrust, Multiplicity & (p^D_T)²), jets with charged+neutral & charged-only constituents, groomed & ungroomed jet, angularities with different jet radii
 - Five λ_{β}^{κ} observables on basis of $\beta =$ 0, 0.5, 1, 2 & $\kappa =$ 0, 1, 2 define as:

$$\lambda_{\beta}^{\kappa} = \sum_{i \in \text{jet}} z_i^{\kappa} (\frac{\Delta R_i}{R})^{\beta}$$
, $z_i = \frac{p_{Ti}}{\sum_{j \in \text{jet}} p_{Tj}}$

 Hypothesis: Larger values of LHA, width, thrust, multiplicity & low value of (p^D_T)² for gluon than quark jets

- Groomed jet: Find the widest hard jet splitting by declustering and following the hardest branches (suppresses effects from pileup, underlying event, and initial-state radiation, which are more difficult to model)
 - ullet Test the Soft Drop condition (z cut = 0.1, eta = 0): Only splittings where the subleading prong carries at least 10% of the combined transverse momentum are accepted.
 - $z = \frac{\min(\rho_T^{(1)}, \rho_T^{(2)})}{\rho_T^{(1)} + \rho_T^{(2)}} > z_{cut} (\frac{\Delta R_{1,2}}{R_{jet}})^{\beta_{sd}}$, if condition is not met, the declustering procedure is repeated with the subjet that has the larger p_T of the two, and the other subjet is rejected

- Quark enriched sample: MG5+PYTHIA8 provides the best description, followed by HERWIG7, PYTHIA8 CP2 ($\alpha_s(m_Z)$ =0.130), SHERPA , HERWIG++, and PYTHIA 8 CP5 ($\alpha_s(m_Z)$ =0.118)
- Gluon enriched sample: HERWIG7 CH3, PYTHIA8 CP5, PYTHIA8 CP2, & SHERPA provide a better description than either HERWIG++ or MG5+PYTHIA8
- Improved modelling of gluon jets at the cost of poorer modelling of quark jets is observed

- Similar data-to-simulation agreement: AK8 vs AK4 jets, charged-only vs charged+neutral, groomed vs ungroomed obsevables
- Ratio (for all generator) → Significantly larger than unity except (p_T^D)²: Showing the clear need for improvements in the MC at low p_T
- The best overall data-to-simulation agreement for the ratio is achived by SHERPA, followed by HERWIG⁺⁺, MG5⁺ PYTHIA 8, HERWIG 7 CH3, PYTHIA 8 CP2, and PYTHIA 8 CP5.

(1) (2) (3) (4) (5)

Thrust (λ.1)

(1) (2) (3) (4) (5)

 $(p_{-}^{D})^{2}(\lambda_{0}^{2})$

(1) (2) (3) (4) (5)

Multiplicity (λ₀)

(1) (2) (3) (4) (5)

LHA (λ_{0.5})

(1) (2) (3) (4) (5)

Width (λ.1)

(4) AK4, [120, 150] GeV charged-only [5) AK4, [120, 150] GeV

Results: Measurement of the Lund jet plane using charged particles in 13 TeV with the ATLAS detector Phys.Rev.Lett.124 (2020) 222002

Goal: To use the Lund Plane of primary jet emissions to isolate various QCD effects in jets

- Calculation of number of emissions within regions of the Lund jet plan (LJP) provides optimal discrimination between quark and gluon jets
- In QCD parton emissions are characterized by a) emission opening angle (θ) b) momentum fraction (z) of emitted gluon w.r.t to primary quark and gluon
- $\bullet \ \, \mathsf{Plane} \ (\mathsf{In}(1/\mathsf{z}), \, \mathsf{In}(1/\theta)) \ \mathsf{is} \ \mathsf{the} \ \mathsf{'Lund} \ \mathsf{jet} \ \mathsf{plane'} \rightarrow \mathsf{Useful} \ \mathsf{to} \ \mathsf{study} \ \mathsf{jet} \ \mathsf{substructure}$
 - $\bullet \ \ \text{Jets: Jets constituents are reclustered using the C/A algorithm using angle-ordered hierarchy}$
 - Followed in reverse ('declustered'), starting from the hardest proto-jet.
 - ullet For each proto-jet pair, at each step o Individual jets are represented as a set of points within LJP

Why Lund jet plane?

 Contributions from various QCD effects: ISR, UE, MPI, hadronization, & perturbative emissions are well-localized in the LJP

Ratio of simulation at charged-particle level varied only one component (PS model) of simulation →
 Differences of up to 50% in the perturbative hard and wide-angle emissions

Results: Measurement of the Lund jet plane using charged particles in 13 TeV with the ATLAS detector Phys.Rev.Lett.124 (2020) 222002

The Lund Jet plane measured in dijet events:

- ullet Jets: Anti-k $_{T}$ =0.4, p $_{T}^{leading} >$ 675 GeV, $|\eta| < 2.1$
 - \bullet LJP observables: Rebuilding C/A jets using tracks in dijets events & then declustering

- $k_T \gtrsim \Lambda_{QCD}$: uniformly populated by perturbative emissions
- Transition to the nonperturbative regime: Large number of emissions
- Nonperturbative region: Emission suppressed

- Hard and widest emission: Angular-ordererd PS performs well
- Hadronisation region better described by string-based sherpa models

Results: Mass regression of highly-boosted jets using graph neural networks DP-2021-017

Mass regression: Machine learning (ML) technique to reconstruct the mass of hadronically decaying highly Lorentz-boosted heavy particles

- ParticleNet Tagger: Network is trained using PF candidates & secondary vertices associated with AK8/AK15 jet.
- $\begin{tabular}{ll} \hline \bullet & ParticleNet Mass Regression: In addition to ParticleNet Tagger training sample consists of an equal mix of QCD and Higgs bosons event generated with MG+PYTHIA8. The Higgs boson sample generated with an equal mix of H\rightarrow bb/cc/qq (q=u,d,s) decays. \end{tabular}$
- Target Mass (M_{target}): Heterogeneous nature→ "soft drop" mass for the QCD sample otherwise Higgs boson generator mass in [15, 250] GeV range.

- Mass regression shows a substantial improvement in the mass resolution and in the absolute scale.
- Tails are also strongly mitigated with the mass regression, in particular at $M \sim 0$, where the soft drop

algorithm incorrectly identifies the large R iet as single-prong.

Results: Mass regression of highly-boosted jets using graph neural networks DP-2021-017

The mass regression shows a substantial improvement in the resolution for all the considered mass range.

Results: Boosted hadronic vector boson and top quark tagging

with ATLAS using Run 2 data ATL-PHYS-PUB-2020-017

Goal: In order to enhance the sensitivity of W & Z bosons, Higgs bosons, and top quarks final states, taggers are designed to identify large-R jets that originate from boosted hadronic decays.

- Labeling procedure for a jet (have smaller generator dependence):
 - Inclusive tops aim at identifying tops where just parts of the decay are within the large-R jets
 - Contained top aim at reconstructing tops where all the decay products are within the jet
 - Inclusive top $\rightarrow \Delta R(\text{jet}_{truth}, \text{ truth top quark}) < 0.75 \text{ after FSR}$
 - ullet Contained top jet o If an inclusive top jet has ≥ 1 b-hadron, & m_{turth} > 140 GeV
 - $\bullet~W \rightarrow \Delta \textit{R}(jet_{\textit{truth}},~truth~W~boson) < 0.75,~no~b-hadrons,~50 < m_{\textit{truth}} < 100~GeV$
 - $\bullet \ Z \rightarrow \text{If it fails the W label criteria } \& \ \Delta \textit{R}(\text{jet}_{\textit{truth}}, \ \text{truth Z boson}) < 0.75, \ 60 < m_{\textit{truth}} < 110 \ \text{GeV}$

Results: Boosted hadronic vector boson and top quark tagging with ATLAS using Run 2 data

Eur.Phys.J.C79 (2019) 375

Without JES correction

ATL-PHYS-PUB-2020-017

With JES correction \rightarrow Improved data and MC agreement near the mass peaks Left: W enriched events Right: Top enriched events

Results: Boosted hadronic vector boson and top quark tagging with ATLAS using Run 2 data

- ullet W & Z tagger o Use selections on the large-R jet mass, energy correlation function ratio $(D_2^{\beta=1.0})$ and the ghost-associated track multiplicity
- Top tagger → Deep neural networks trained on hadronic jet properties, including several jet substructure moments

ATL-PHYS-PUB-2020-017

- Inclusive top taggers → Good agreement across the region within the uncertainties
- Background efficiency scale factors

 Close to unity, dominant uncertainties are statistical and modeling

Summary

- Study of quark and gluon jet substructure in dijet and Z+jet events from pp collisions (CMS):
 - Means of the angularities in quark-and gluon-enriched data samples demonstrated their discrimination power, overestimated by all generators, showing the clear need for improvements in the MC.
- Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector (ATLAS):
 No generator match data in full Lund jet plane so it can provide useful input to both perturbative and nonperturbative model development and tuning
- Mass regression of highly-boosted jets using graph neural networks (CMS):
 Shows a substantial improvement in the resolution for all the considered mass range as compare to more traditional grooming algorithms
- Boosted hadronic vector boson and top quark tagging with ATLAS using Run 2 data (ATLAS):
 - Future improvements for top tagging could include the addition of track variables in the DNN after considering the background rejection gain along with the impact of the additional associated uncertainties

