

Yoshini Bailung, for the ALICE Collaboration Indian Institute of Technology Indore (IN)

50th International Symposium on Multiparticle Dynamics 12 -16 July 2021

Heavy quarks (charm, beauty) due to their large masses $(m_c\sim1.3~GeV/c^2,~m_b\sim4.2~GeV/c^2)$ are produced at the early stages of the collision via hard scattering

Heavy quarks (charm, beauty) due to their large masses (m_c~1.3 GeV/c ², m_b~4.2 GeV/c ²) are produced at the early stages of the collision via hard scattering

Why multiplicity studies?

Heavy quarks (charm, beauty) due to their large masses (m_c~1.3 GeV/c ², m_b~4.2 GeV/c ²) are produced at the early stages of the collision via hard scattering

Why multiplicity studies?

Inspect the role of multi-parton interactions and color reconnection in hadronization mechanisms
Interplay of soft and hard components in pp
collisions

Collectivity in small systems?

Heavy quarks (charm, beauty) due to their large masses $(m_c\sim1.3~GeV/c^2,~m_b\sim4.2~GeV/c^2)$ are produced at the early stages of the collision via hard scattering

Test of perturbative QCD calculations
Baseline reference for heavy-ion studies

Why multiplicity studies?

Inspect the role of multi-parton interactions and color reconnection in hadronization mechanisms
Interplay of soft and hard components in pp
collisions

Collectivity in small systems?

Heavy quarks (charm, beauty) due to their large masses (m_c~1.3 GeV/c ², m_b~4.2 GeV/c ²) are produced at the early stages of the collision via hard scattering

Why multiplicity studies?

Inspect the role of multi-parton interactions and color reconnection in hadronization mechanisms
Interplay of soft and hard components in pp collisions

Collectivity in small systems?

Test of perturbative QCD calculations Baseline reference for heavy-ion studies

Modification of heavy flavor yields due to cold nuclear matter (CNM) effects

Heavy quarks (charm, beauty) due to their large masses $(m_c\sim1.3~GeV/c^2,~m_b\sim4.2~GeV/c^2)$ are produced at the early stages of the collision via hard scattering

Why multiplicity studies?

Inspect the role of multi-parton interactions and color reconnection in hadronization mechanisms
Interplay of soft and hard components in pp
collisions

Collectivity in small systems?

High multiplicity pp, p-Pb collisions show similarities to what is observed in heavy-ion collisions

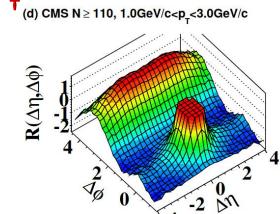
Test of perturbative QCD calculations
Baseline reference for heavy-ion studies

Modification of heavy flavor yields due to cold nuclear matter (CNM) effects

Heavy quarks (charm, beauty) due to their large masses (m_c~1.3 GeV/c ², m_b~4.2 GeV/c ²) are produced at the early stages of the collision via hard scattering

Why multiplicity studies?

Inspect the role of multi-parton interactions and color reconnection in hadronization mechanisms
Interplay of soft and hard components in pp collisions


Collectivity in small systems?

High multiplicity pp, p-Pb collisions show similarities to what is observed in heavy-ion collisions

Ridge formation

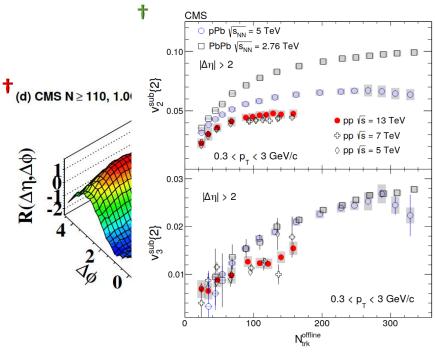
Test of perturbative QCD calculations Baseline reference for heavy-ion studies

Modification of heavy flavor yields due to cold nuclear matter (CNM) effects

Heavy quarks (charm, beauty) due to their large masses (m_c~1.3 GeV/c ², m_b~4.2 GeV/c ²) are produced at the early stages of the collision via hard scattering

Why multiplicity studies?

Inspect the role of multi-parton interactions and color reconnection in hadronization mechanisms
Interplay of soft and hard components in pp collisions


Collectivity in small systems?

High multiplicity pp, p-Pb collisions show similarities to what is observed in heavy-ion collisions

- Ridge formation
- Anisotropic flow

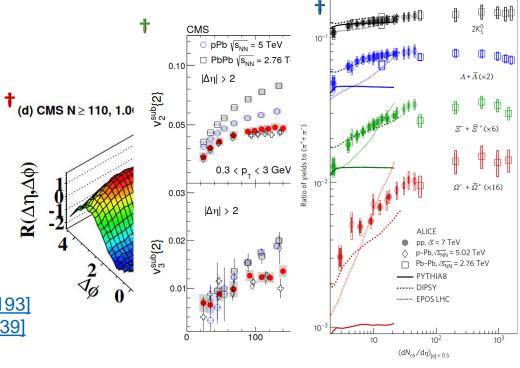
Test of perturbative QCD calculations Baseline reference for heavy-ion studies

Modification of heavy flavor yields due to cold nuclear matter (CNM) effects

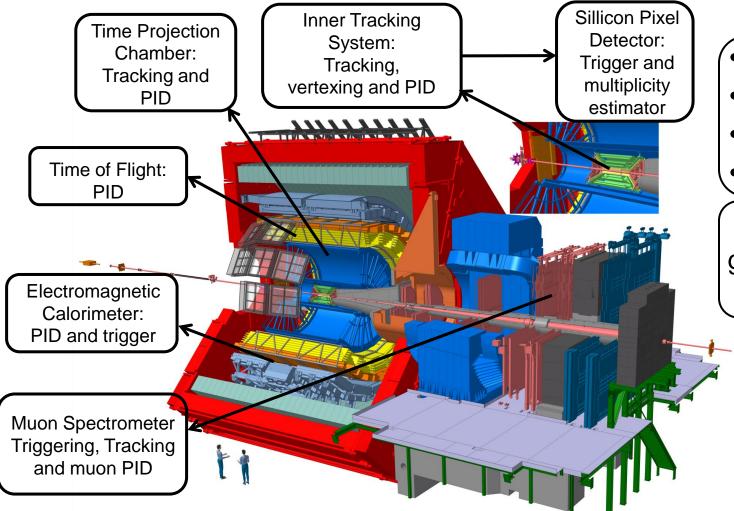
Heavy quarks (charm, beauty) due to their large masses (m_c~1.3 GeV/c ², m_b~4.2 GeV/c ²) are produced at the early stages of the collision via hard scattering

Why multiplicity studies?

Inspect the role of multi-parton interactions and color reconnection in hadronization mechanisms
Interplay of soft and hard components in pp
collisions


Collectivity in small systems?

High multiplicity pp, p-Pb collisions show similarities to what is observed in heavy-ion collisions


- Ridge formation
- Anisotropic flow
- Strange baryon enhancement
- **†** [CMS, JHEP 09 (2010) 091]
- † [CMS, Phys. Lett. B 765 (2017) 193]
- † [Nature Physics 13 (2017) 535-539]

Test of perturbative QCD calculations Baseline reference for heavy-ion studies

Modification of heavy flavor yields due to cold nuclear matter (CNM) effects

Open heavy-flavors with ALICE

Hadronic Decay Channels

• D⁰
$$\longrightarrow$$
 K⁻ π ⁺

•
$$D_s^+ K^- K^+ \pi^+$$

• D+
$$\longrightarrow$$
 K- π + π +

•
$$D^* + \longrightarrow D^0 \pi^+$$

Reconstructing all ground state charm hadrons

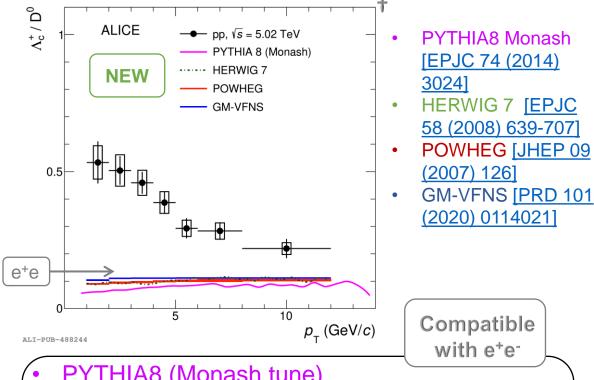
$$\stackrel{\bullet}{ \Lambda_{c}^{+}} \longrightarrow pK^{-}\pi^{+}$$

$$\| \cdot \Lambda_c^+ \longrightarrow pK_s^0 \|$$

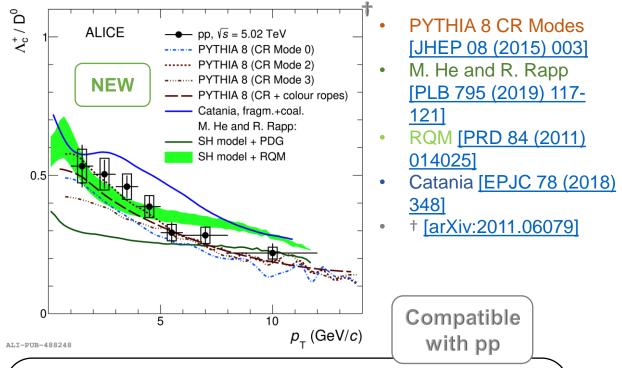
•
$$\sum_{c}^{0} \longrightarrow \Lambda_{c}^{+} \pi^{-}$$

$$\sum_{c}^{++} \longrightarrow \Lambda_{c}^{+} \pi^{+}$$

$$\Xi_c^0 \longrightarrow \Xi^-\pi^+$$


•
$$\Xi_c^+ \longrightarrow \Xi^-\pi^+\pi^+$$

•
$$\Omega_{\rm c}^{\ 0} \longrightarrow \Omega^{\text{-}} \pi^{+}$$


Semileptonic Decay Channels

B,D
$$\longrightarrow$$
 e + X B,D \longrightarrow μ + X

Λ_c^+/D^0 in pp at $\sqrt{s} = 5.02$ TeV

- PYTHIA8 (Monash tune)
- HERWIG 7 (hadronization via clusters)
- **POWHEG** (matched with PYTHIA 6 to generate parton showers)
- **GM-VFNS** pQCD calculations

- PYTHIA8 with Color Reconnection (CR) beyond leading color (BLC) approximation (Mode 0, Mode 2, Mode 3)
- Catania with coalescence+fragmentation
- M.He and R. Rapp + RQM (SHM approach)

7/15/2021 ALICE Collaboration Yoshini Bailung ISMD 2021

Λ_c^{+}/D^0 in pp at $\sqrt{s} = 5.02$ TeV

See poster by **Tiantian Cheng** (13 July, 19:30 CEST) for more discussion on **charm-baryon enhancement**

PYTHIA 8 CR Modes

[JHEP 08 (2015) 003]

[PLB 795 (2019) 117-

RQM [PRD 84 (2011)

+ [arXiv:2011.06079]

Compatible

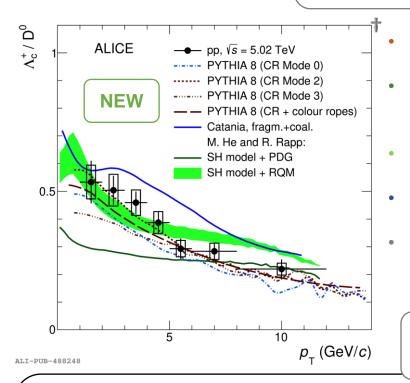
with pp

Catania [EPJC 78 (2018)

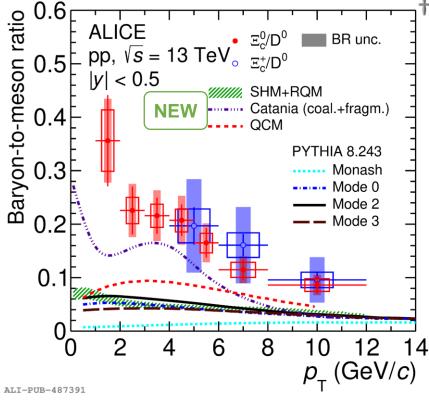
M. He and R. Rapp

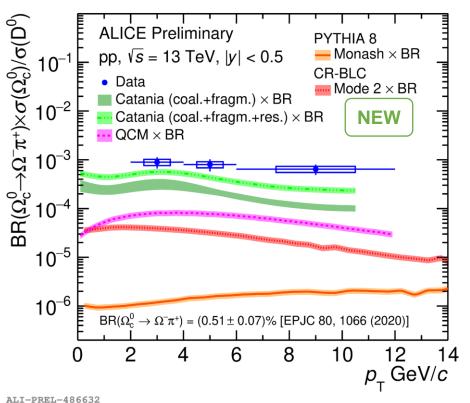
121]

348]

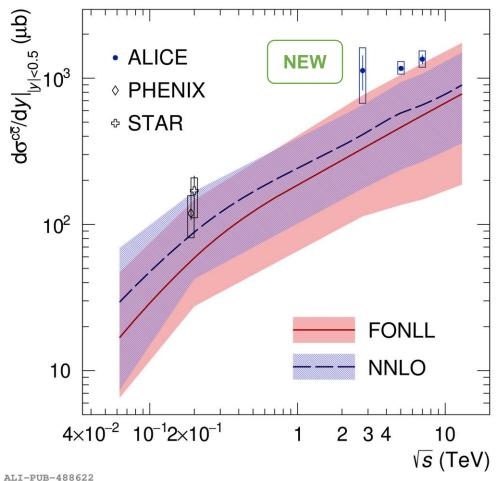

0140251

- PYTHIA8 Monash [EPJC 74 (2014) 3024]
- HERWIG 7 [EPJC 58 (2008) 639-707]
- POWHEG [JHEP 09 (2007) 126]
- GM-VFNS [PRD 101 (2020) 0114021]


Compatible with e⁺e⁻


- PYTHIA8 (Monash tune)
- HERWIG 7 (hadronization via clusters)
- POWHEG (matched with PYTHIA 6 to generate parton showers)
- GM-VFNS pQCD calculations

- PYTHIA8 with Color Reconnection (CR) beyond leading color (BLC) approximation (Mode 0, Mode 2, Mode 3)
- Catania with coalescence+fragmentation
- M.He and R. Rapp + RQM (SHM approach)


calculation

(0.51±0.07%) theoretical

arXiv: 2105.05187

- PYTHIA8 CR-BLC, Catania with coalescence, QCM
 underestimate data
- Catania with coalescence + fragmentation + resonances
 —> compatible with data
- PYTHIA8 CR-BLC, SHM+RQM, Quark (re-)Combination Mechanism (QCM)—>underestimate data
- Catania with coalescence + fragmentation → compatible with data

Charm total production cross section

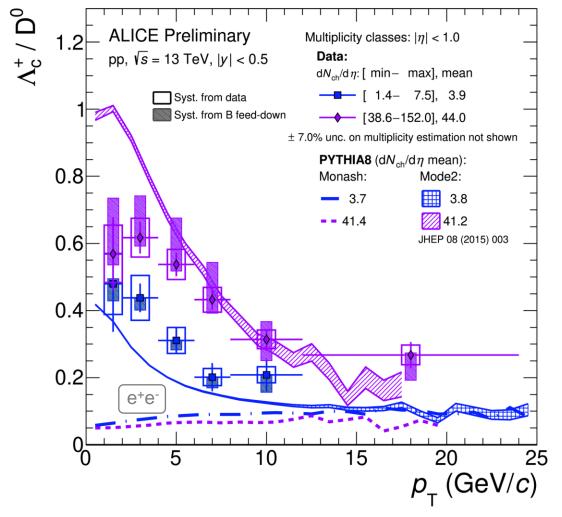
 New measurement of total charm cross section in pp at 5.02 TeV[†]

$$d\sigma^{c\bar{c}}/dy|_{|y|<0.5} = 1165 \pm 44(stat.)^{+134}_{-101}(syst.)\mu b$$

- Previous results in pp at 2.76[†] and 7[†] TeV updated with fragmentation fractions from 5.02 TeV analysis → 40% higher
- Results on the upper edge of FONLL and **NNLO** calculations
- FONLL [JHEP 1210 (2012) 137]
- NNLO [PRL 118 (2017)] [JHEP 03 (2021) 029]
- PHENIX [PRC 84 (2011) 044905]
- STAR [PRD 86 (2012) 072013]

- + [arXiv:2105.06335]
- + [JHEP 07 (2012) 191]
 - + [EPJC 77 (2017) 550]

Λ_c^+/D^0 in pp at $\sqrt{s} = 13$ TeV

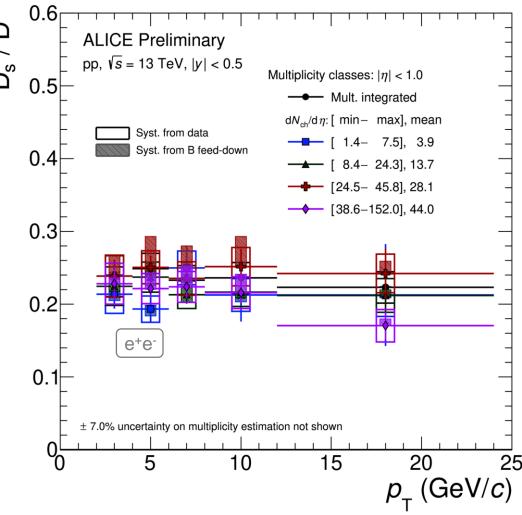

• Multiplicity dependence of Λ_c^+/D^0 yield ratio

Modifications in hadronization mechanisms with multiplicity?

Radial flow in high multiplicity pp events?

- PYTHIA8 Monash tune fails to describe the results
- PYTHIA8 with CR Mode2 describes the measurements with $p_{\rm T}$ and multiplicity fairly well
- Measurements higher than values in e⁺e^{-†} collisions

Non-universality of charm fragmentation

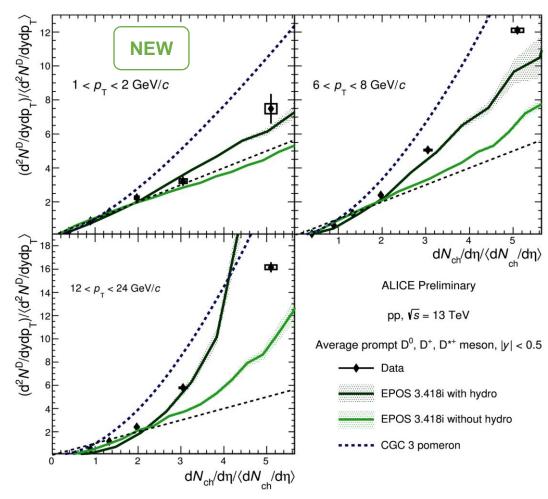


ALI-PREL-336442

D_s^+/D^0 in pp at $\sqrt{s} = 13$ TeV

- No multiplicity dependence observed for D_s+/D⁰ ratio yields
- The results are comparable with the average of p_T integrated measurements performed at e⁺e^{-†} collisions

† [L. Gladilin, Eur. Phys. J. C 75, 19 (2015)]


ALI-PREL-336402

pp at $\sqrt{s} = 13 \text{ TeV}$

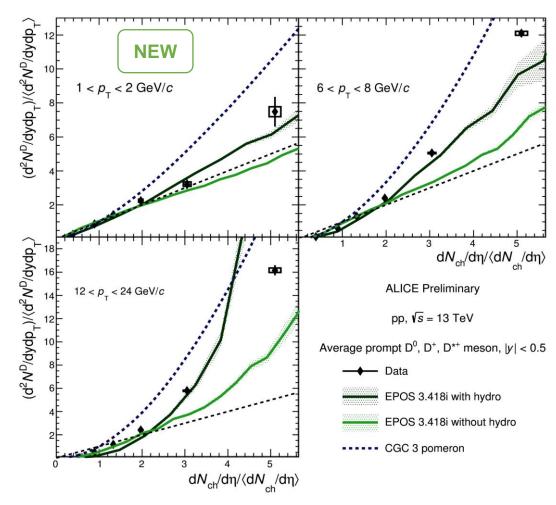
 EPOS3[†] generator assuming initial conditions followed by a hydrodynamical evolution

EPOS3 without the hydro component

• CGC Pomeron3[†], with three-pomeron fusion correction

7/15/2021 Yoshini Bailung ALICE Collaboration ISMD 2021 9

pp at $\sqrt{s} = 13 \text{ TeV}$


 EPOS3[†] generator assuming initial conditions followed by a hydrodynamical evolution

Comparable to data

Deviates at high multiplicities

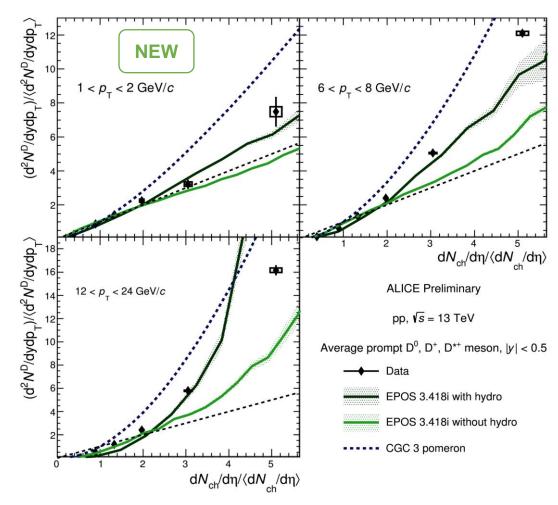
EPOS3 without the hydro component

 CGC Pomeron3[†], with three-pomeron fusion correction

7/15/2021 Yoshini Bailung ALICE Collaboration ISMD 2021 9

pp at $\sqrt{s} = 13 \text{ TeV}$

 EPOS3[†] generator assuming initial conditions followed by a hydrodynamical evolution


Comparable to data

Deviates at high multiplicities

• EPOS3 without the hydro component

Understimates data

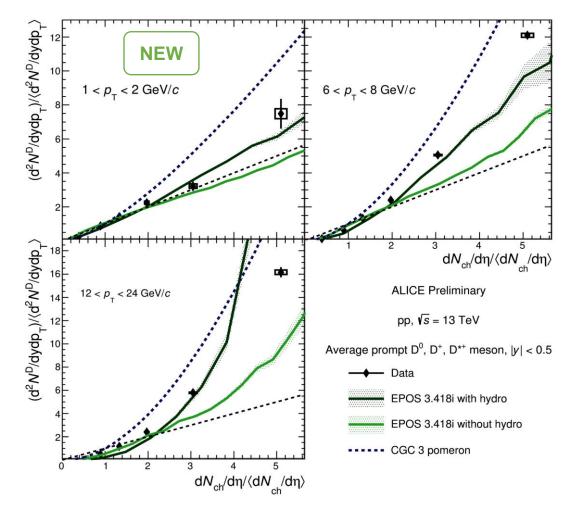
 CGC Pomeron3[†], with three-pomeron fusion correction

7/15/2021 Yoshini Bailung ALICE Collaboration ISMD 2021 9

pp at $\sqrt{s} = 13 \text{ TeV}$

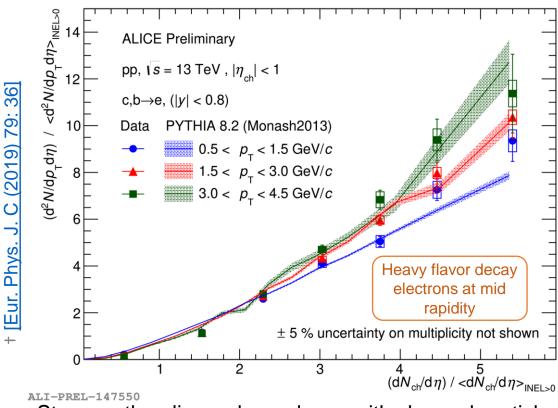
 EPOS3[†] generator assuming initial conditions followed by a hydrodynamical evolution

Comparable to data

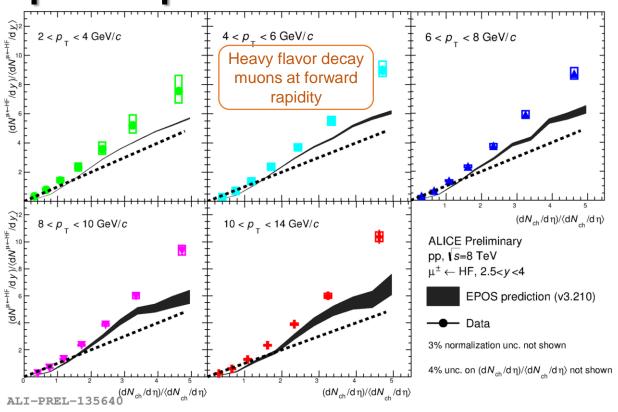

Deviates at high multiplicities

EPOS3 without the hydro component

Understimates data


CGC Pomeron3[†], with three-pomeron fusion correction

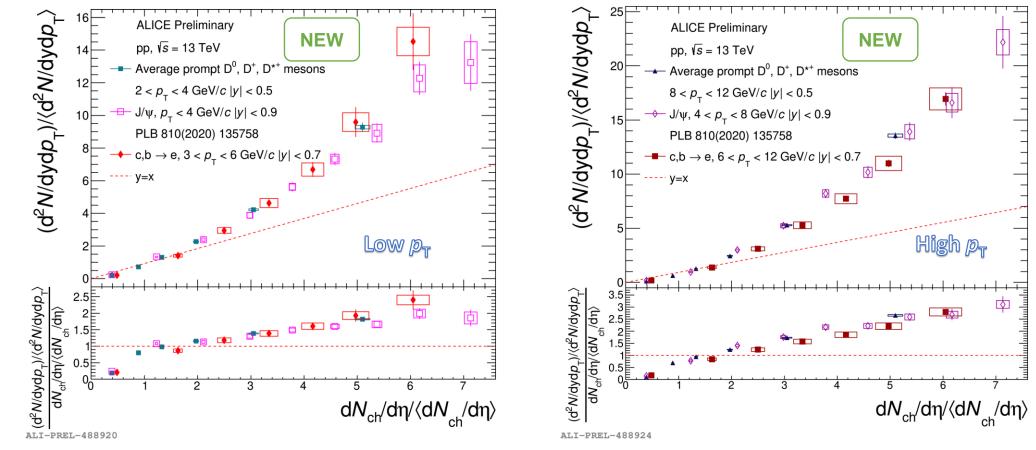
Overestimates data


7/15/2021 Yoshini Bailung ALICE Collaboration ISMD 2021 9

Heavy flavor decay lepton production

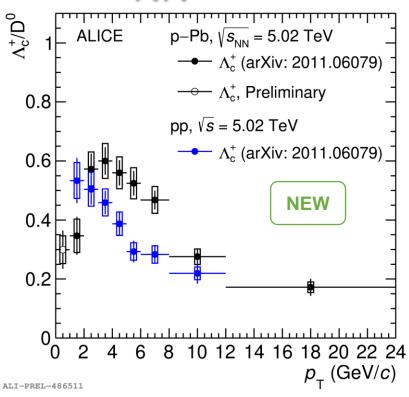
Stronger than linear dependence with charged-particle multiplicity with increasing p_T dependence

PYTHIA 8.2 Monash 2013 tune → comparable with data. Role of auto-correlation effects in stronger than linear trend[†]

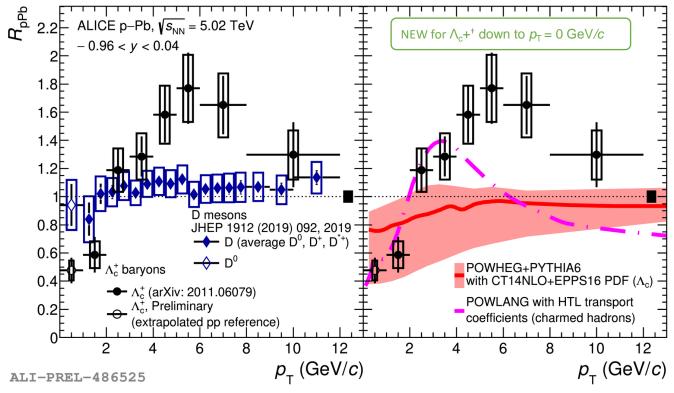


Similar dependence with charged-particle multiplicity with a weaker p_T dependence.

EPOS3 predictions (without hydro) → underestimates data


More comparisons!

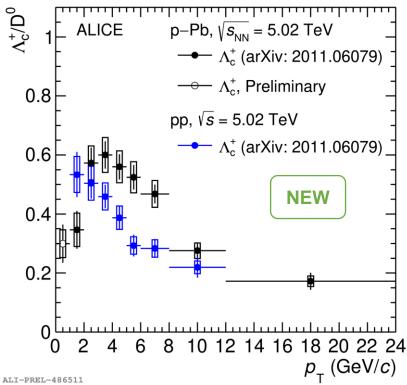
+ [PLB 810 (2020) 135758]



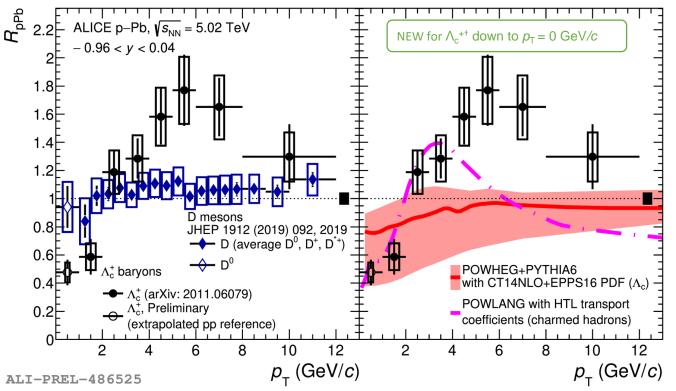
Similar trend of self-normalised yield for D-meson, electrons from heavy-flavor hadron decays, and J/ $\Psi^{\scriptscriptstyle \dagger}$ at mid rapidity, both at low and high $p_{\rm T}$

Open charm measurements in p-Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

 Λ_c^+/D^0 comparisons \longrightarrow higher in mid p_T and lower in $p_T < 2$ GeV/c for p-Pb w.r.t. pp collisions

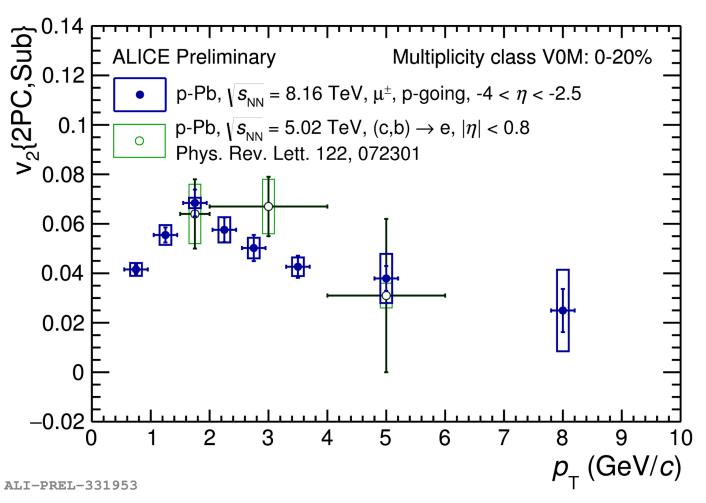

- R_{pPb} (D⁰) ≈ 1 across all p_{T}
- R_{pPb} (Λ_c^+) \longrightarrow Suppression at $p_T < 2$ GeV/c above unity elsewhere

POWHEG [EPJC 77 no. 3, (2017) 163


PYTHIA6 [JHEP 09 (2007) 126]

POWLANG [JHEP 03 (2016) 123]

Open charm measurements in p-Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$


 Λ_c^{+}/D^0 comparisons \longrightarrow higher in mid p_T and lower in $p_T < 2$ GeV/c for p-Pb w.r.t. pp collisions

- $R_{\text{pPb}}(D^0) \approx 1 \text{ across all } p_T$
- R_{pPb} (Λ_c^+) \longrightarrow Suppression at $p_T < 2$ GeV/c above unity elsewhere

Radial flow or modification of hadronization mechanism in p-Pb systems?

Elliptic flow of heavy flavor leptons in p-Pb collisions

- v₂ of heavy flavor decay electrons[†] and muons measured at mid and forward rapidity respectively are compatible
- Indication of collectivity in the collision system

† [PRL 122, (2019) 072301]

Summary

- Λ_c+/D⁰ in pp at 5.02 TeV show enhancement compared to e+e-. Clear p_T and multiplicity dependence observed (Not seen for D_s+/D⁰)
- Λ_c^+/D^0 in pp at 5.02 TeV, $\Xi_c^{-0,+}/D^0$ and Ω_c^{-0}/D^0 in pp at 13 TeV measurements compared to various model predictions
- Total charm cross section in pp at 5.02 TeV measured using all charm hadron states
- Average D-mesons, J/ Ψ and heavy flavor lepton self-normalised yields in pp at 13 TeV are compatible with the stronger than linear trend with multiplicity and steeper p_T dependence in similar p_T bins —> Weak p_T dependence for muons
- EPOS3 with hydro component reproduce the average D-meson production and PYTHIA8 Monash 2013 reproduce heavy flavor electrons data fairly well.
 EPOS3 without hydro fails to reproduce the D-meson and muon production
 - **First** measurement of Λ_c^+ down to $\rho_T = 0$ GeV/c in p-Pb at 5.02 TeV
- R_{pPb} measurements \longrightarrow \approx 1 for D⁰, <1 for Λ_c^+ at p_T < 2 GeV/c and >1 elsewhere. POWHEG+PYTHIA6 and POWLANG predictions are in **good** agreement at low and intermediate p_T but **deviates** at high p_T for Λ_c^+ measurements
- Positive v₂ observed for heavy flavor leptons (muons at forward rapidity and electrons at mid-rapidity)

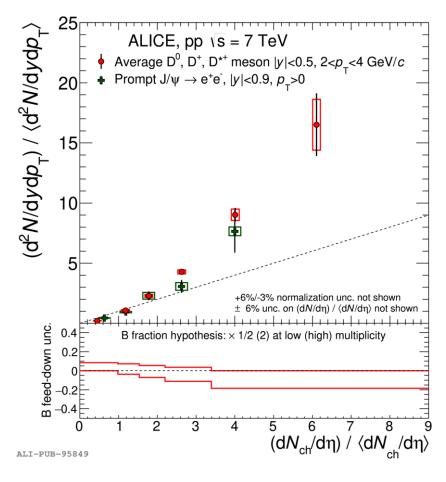
Summary

- Λ_c+/D⁰ in pp at 5.02 TeV show enhancement compared to e+e⁻. Clear p_T and multiplicity dependence observed (Not seen for D_s+/D⁰)
- Λ_c^+/D^0 in pp at 5.02 TeV, $\Xi_c^{0,+}/D^0$ and Ω_c^0/D^0 in pp at 13 TeV measurements compared to various model predictions
- Total charm cross section in pp at 5.02 TeV measured using all charm hadron states
- Average D-mesons, J/ Ψ and heavy flavor lepton self-normalised yields in pp at 13 TeV are compatible with the stronger than linear trend with multiplicity and steeper p_T dependence in similar p_T bins —> Weak p_T dependence for muons
- EPOS3 with hydro component reproduce the average D-meson production and PYTHIA8 Monash 2013 reproduce heavy flavor electrons data fairly well. EPOS3 without hydro fails to reproduce the D-meson and muon production
 - **First** measurement of Λ_c^+ down to $\rho_T = 0$ GeV/c in p-Pb at 5.02 TeV
- R_{pPb} measurements \longrightarrow \approx 1 for D⁰, <1 for Λ_c^+ at p_T < 2 GeV/c and >1 elsewhere. POWHEG+PYTHIA6 and POWLANG predictions are in **good** agreement at low and intermediate p_T but **deviates** at high p_T for Λ_c^+ measurements
- **Positive** v_2 observed for heavy flavor leptons (muons at forward rapidity and electrons at mid-rapidity)

- Enhancement of all charmbaryon production in pp collisions than e⁺e⁻ collisions
- Charm fragmentation non universal
- Multi-parton interactions, color reconnection mechanism and auto- correlation effects in play
- Collectivity in high multiplicity pp collisions?
- Hint of modification of hadronization mechanisms vs multiplicity

Summary

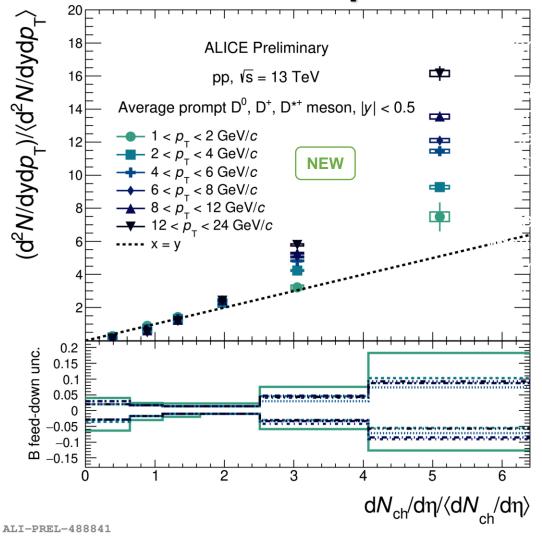
- Λ_c+/D⁰ in pp at 5.02 TeV show enhancement compared to e+e-. Clear p_T and multiplicity dependence observed (Not seen for D_s+/D⁰)
- Λ_c^+/D^0 in pp at 5.02 TeV, $\Xi_c^{0,+}/D^0$ and Ω_c^0/D^0 in pp at 13 TeV measurements compared to various model predictions
- Total charm cross section in pp at 5.02 TeV measured using all charm hadron states
- Average D-mesons, J/ Ψ and heavy flavor lepton self-normalised yields in pp at 13 TeV are compatible with the stronger than linear trend with multiplicity and steeper p_T dependence in similar p_T bins —> Weak p_T dependence for muons
- EPOS3 with hydro component reproduce the average D-meson production and PYTHIA8 Monash 2013 reproduce heavy flavor electrons data fairly well. EPOS3 without hydro fails to reproduce the D-meson and muon production
 - **First** measurement of Λ_c^+ down to $\rho_T = 0$ GeV/c in p-Pb at 5.02 TeV
- R_{pPb} measurements \longrightarrow \approx 1 for D⁰, <1 for Λ_c^+ at p_T < 2 GeV/c and >1 elsewhere. POWHEG+PYTHIA6 and POWLANG predictions are in **good** agreement at low and intermediate p_T but **deviates** at high p_T for Λ_c^+ measurements
- **Positive** v_2 observed for heavy flavor leptons (muons at forward rapidity and electrons at mid-rapidity)

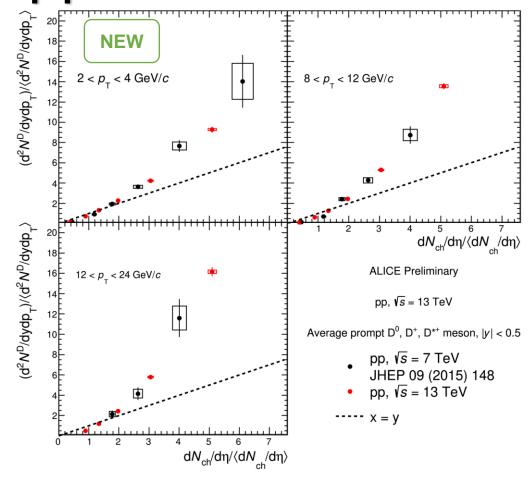

- Enhancement of all charmbaryon production in pp collisions than e⁺e⁻ collisions
- Charm fragmentation non universal
- Multi-parton interactions, color reconnection mechanism and auto- correlation effects in play
- Collectivity in high multiplicity pp collisions?
- Hint of modification of hadronization mechanisms vs multiplicity

Collectivity in high multiplicity p-Pb collision systems?

Measurements in pp at $\sqrt{s} = 7$ TeV

Self-normalised yields are calculated as

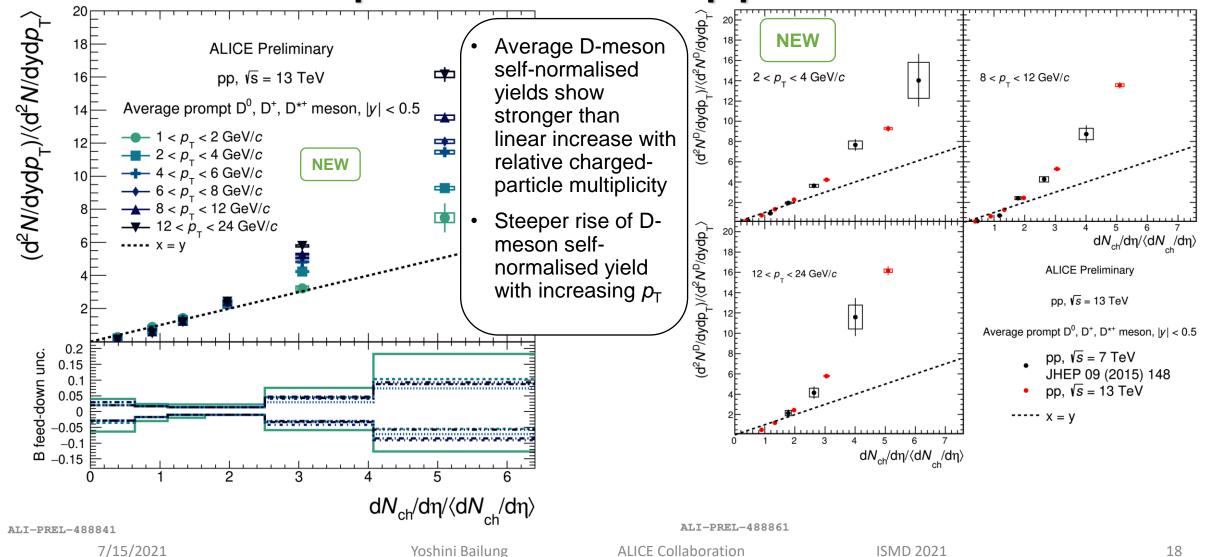

$$\mathbf{Y}_{ ext{corr}}^{ ext{mult}} = \left(rac{\mathbf{Y}^{ ext{mult}}}{(\epsilon^{ ext{mult}} imes \mathbf{N}_{ ext{event}}^{ ext{mult}})/\epsilon_{ ext{mult}}^{ ext{trg}}}
ight) \left/ \left(rac{\mathbf{Y}_{ ext{int}}^{ ext{mult}}}{(\epsilon^{ ext{mult}}_{ ext{int}} imes \mathbf{N}_{ ext{event}}^{ ext{mult}})/\epsilon_{ ext{int}}^{ ext{trg}}}
ight)$$

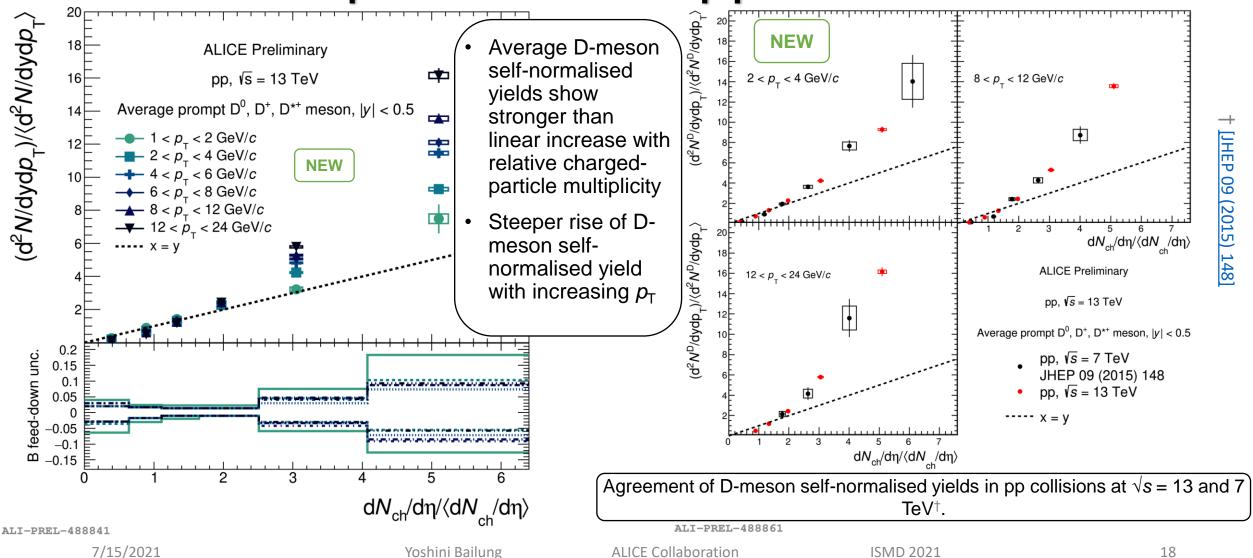

Y^{mult} is the extracted raw yield, £^{mult} is the Acc × Eff value, N^{mult} event is the number of events, and £^{trg}_{mult} is the trigger efficiency for a particular multiplicity bin. The numerator is normalised to the corresponding quantity for INEL > 0

• D-meson and J/ Ψ measurements at $\sqrt{s} = 7$ TeV[†] show a stronger than linear trend.

† [JHEP 09 (2015) 148]

D-meson production in pp at \sqrt{s} = 13 TeV

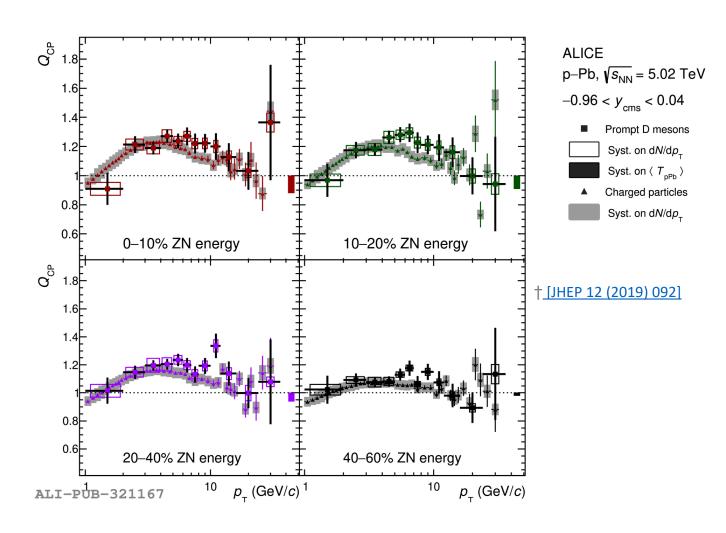



ALI-PREL-488861

ALICE Collaboration ISMD 2021

D-meson production in pp at \sqrt{s} = 13 TeV

D-meson production in pp at \sqrt{s} = 13 TeV


D-meson Q_{cp} in p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV

 Q_{CP}[†] of D-meson yield ratios to the yield measured in the 60-100% centrality class are shown

$$Q_{\rm CP} = \frac{({\rm d}^2 N^{\rm prompt\, D}/{\rm d} p_{\rm T} {\rm d} y)^{\rm i}_{\rm p-Pb}/\langle T_{\rm pPb}\rangle_{\rm i}}{({\rm d}^2 N^{\rm prompt\, D}/{\rm d} p_{\rm T} {\rm d} y)^{60-100\%}_{\rm p-Pb}/\langle T_{\rm pPb}\rangle_{60-100\%}},$$

where $\langle T_{pPb} \rangle$ is the nuclear overlap function

 The enhancement of Q_{CP} at intermediate p_T hint of radial flow

