Belle II experiment: status and prospect

Doris Yangsoo Kim Soongsil University

July 14, 2021

50th International Symposium on Multiparticle Dynamics (ISMD2021)

Virtual Conference

Belle II

Contents

- The SuperKEKB Collider and the Belle II Experiment
- Luminosity Achievements
- Detector Performance
- The First Physics Results (Selected Topics)
- Run plan
- Summary

KEKB to SuperKEKB: Accomplished

- Nano beam scheme + Crab waist optics
- Target: vertical beta function β_{ν}^* 5.9 mm (KEKB) to 0.3 mm (SuperKEKB)
- Increase beam currents I_{e±}
- Increase beam-beam interaction ξ_{y}

SuperKEKB Luminosity: Current Status

- After the commission phases, Phase III started spring 2019.
- Reclaimed the luminosity record on June 2020! (Previously held by LHC.)
- Spring/summer 2021 run ended on July 5th.
 - Another new luminosity record at $L_{peak} = 3.1 \times 10^{34} cm^{-2} s^{-1}$, the current world record on June 22nd.
 - Data taking efficiency is about 90%, continuously increased by improved detector operation.
 - The 2021 a/b run doubled the Belle II sample size to $\int L_{recorded} dt = 213.49 \ fb^{-1}.$

The Belle II Detector

7.4 m

KL and muon detector:

Resistive Plate Counter (barrel outer layers)

Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

Pixelated photo sensors in TOP/ARICH/KLM Front-end ASICs in many subsystems.

EM Calorimeter:

CsI(TI), waveform sampling

electrons (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector
1 to 2 layers Si Pixels (DEPFET)
4 layers Si double sided strip DSSD

Central Drift Chamber

(He + C2H6) small cells, long lever arm

Particle Identification

Time-of-Propagation counter (barrel)
Prox. focusing Aerogel RICH (forward)

positrons (4GeV)

Vertexing and Tracking Improved

Particle ID improved

Better background insensitivity

Higher event rate

Doris Yangsoo Kim @ ISMD2021, July 14, 2021

ᆨ

Belle II Experiment in a Nutshell

- Belle II Plan: collecting 50 ab⁻¹ as e⁺ e⁻ collisions at Upsilon(4S) and nearby
 - About 50 times larger than its predecessor, Belle with 1.05 ab⁻¹
- Upsilon(4S) decays into $B \bar{B}$ meson pairs coherently with no additional fragments.
 - High tagging efficiency of B decays (Belle II ~30% vs LHCb ~5%)
 - Full event reconstruction tagging possible
- Direct detection of neutrals such as γ , π^0 , K_L .
- A hermetic detector:
 - Detection of neutrinos or invisibles as missing energy/momentum.
- Large τ samples: Search for LFV τ decays at $O(10^{-9})$.
 - Detect both e and μ with similar performance.

DETECTOR PERFORMANCE

Tracking Efficiency

- Use $e^+e^- \rightarrow \tau^+\tau^-$ events.
- One side is a lepton.
- The other side has two charged tracks.
- Count the events where an additional prove track is found (N4) or not (N3).
- $\varepsilon \cdot A = N4/(N4 + N3)$
- A: detector acceptance, ε: track reconstruction efficiency

Particle ID: Charged

 The information from each PID detector defines a likelihood for each particle hypothesis, then merged to define a global PID likelihood.

$$l - ID = \frac{L_l}{L_e + L_{\mu} + L_{\pi} + L_K + L_p}$$

Mid-ID factor inflated by \times 3 for illustrated purposes

FIG. 4: Kaon efficiency and pion mis-ID rate for the PID criterion $\mathcal{R}_{K/\pi} > 0.5$ using the decay $D^{*+} \to D^0[K^-\pi^+]\pi^+$ in the bins of laboratory frame momentum of the tracks.

Neutral Particles

 $\eta \rightarrow 3\pi^0$

- Large hermeticity and uniform ID detectors allow good neutral reconstruction.
- Bremsstrahlung & isolated ISR/FSR photon reconstruction is also possible.

Bremsstrahlung recovered

- Z' search
- Axion-like-particles search
- Charm lifetime
- Time dependent CPV
- Exclusive $B \to \pi l v$ and $|V_{ub}|$
- $B^+ \to K^+ \nu \nu$ with inclusive tagging

THE FIRST PHYSICS RESULTS

The First Physics Paper: Z' Search

- A new result on the dark sector (Z' → nothing) recoiling against di-muons or electron-muon pair: Phys. Rev. Lett. 124, 141801 (2020).
 - Both possibilities are poorly constrained at low Z' mass.
 - The di-muon case could explain the muon g-2 anomaly.

Search for Axion Like Particles

- Axion like particles at low mass are cold dark mater candidates: Phys. Rev. Let. 125, 161806 (2020)
- They couple naturally to photons.
- Look for 3-photon final states via ALP-strahlung in
 - Recoil invariant mass for high m_a .
 - Di-photon mass for low m_a .
- Also studies 1-photon final states.

Charm Lifetime

The new pixel detector improved the lifetime resolution of the charm particles by a factor of 2 with respect to the previous Belle detector.

One example is the $D^0 \to K^-\pi^+$ lifetime study.

Time Dependent CPV and Mixing

Belle II: $S_f \approx \sin 2\phi_1 = 0.55 \pm 0.21 \pm 0.04$. W. A.: $S_f \approx 0.691 \pm 0.017$.

- The golden channel $B^0 \to J/\psi(ll)K_S^0(\pi^+\pi^-)$ is studied and the time dependent CPV parameter $\sin 2\phi_1$ is extracted.
- CPV is assumed only from the B^0 mixing ($A_{CP} = 0$).
- The wrong sign tag ratio $w=(20.9\pm 2.1)\%$ is obtained from the $B^0\to D^-(K^+\pi^-\pi^-)\pi^+$ sample where $\Delta m_d=(0.531\pm 0.046\pm 0.013)~\rm ps^{-1}$.

Full Event Interpretation

Hierachial reconstruction is performed to obtain B (tag) mesons exclusively.

- Traditionally, at Upsilon(4s), one B (tag) is reconstructed first. The rest of the event is considered as a signal B. https://arxiv.org/abs/2008.02707
- An improved tool (FEI) is developed based on Boosted Decision Tree.

T. Keck et al., Comput. Softw. Big Sci. 3, 6

(2019)

$|V_{ub}|$: Exclusive $B \to \pi l v$

 Here is an example of FEI applied to a semileptonic decay of B meson.

PDG
$$|V_{ub}|$$

inclusive: $(4.25 \pm 0.12^{+0.15}_{-0.14} \pm 0.23) \times 10^{-3}$

exclusive: $(3.70 \pm 0.10 \pm 0.12) \times 10^{-3}$

 Measurement of branching fraction and Lattice QCD calculation result can extract |V_{ub}| at q²(max).

$$BF(B^0 \to \pi^- l^+ \nu)$$

Belle II: $[1.58 \pm 0.43(\text{stat}) \pm 0.07(\text{sys})] \times 10^{-4}$

W.A.: $[1.50 \pm 0.06] \times 10^{-4}$

$B^+ \to K^+ \nu \nu$ with Inclusive Tagging

FIG. 1: Lowest-order quark-level diagrams for the $b\to s\nu\bar{\nu}$ transition in the SM.

Babar	$< 1.6 \times 10^{-5} (90\% \text{ C.L.})$	Phys. Rev. D87,112005 (2013)
Belle	$< 1.9 \times 10^{-5} (90\% \text{ C.L.})$	Phys. Rev. D96,091101(R) (2017)
Belle II	$< 4.1 \times 10^{-5} (90\% \text{ C.L.})$	https://arxiv.org/abs/2105.05754

SUMMARY

Near Term Prospects and Run Plan

- In general, SuperKEKB will run 8 months per year.
- 2021 autumn
 - Upsilon(4S) \sim 400 fb^{-1} (Babar)
 - 10.75 GeV scan for 10 fb^{-1}
- 2022 summer $\sim 700 \ fb^{-1}$ (Belle)
- 2022 Long shutdown 1
 - PXD exchange. TOP PMT replacement
- $2026 \sim 15 \ ab^{-1}$
- 2026 Long shutdown 2
 - Partial RF-power upgrade. IR upgrade.
- $2031 \sim 50 \ ab^{-1}$

Summary

- SuperKEKB has achieved $L_{peak} = 3.1 \times 10^{34} cm^{-2} s^{-1}$, the world record on June 22nd.
 - It is a super B factory now.
- Belle II has started producing new results, including a world leading results in dark sector with limited Phase II data: Z' and ALP papers
 - More updates are coming with Phase III data
- Belle II rediscovered many flavor physics signatures based on the early Phase III data: 12+8 conference papers at arXiv/Belle II docs
 - Reports at ICHEP 2020, Moriond 2021.
- Belle II is planning to collect 50 ab⁻¹ by 2031. This is a very exciting time to do flavor physics, looking for physics beyond the Standard Model.

EXTRA

KEKB to SuperKEKB: Commission Timeline

- New 3km positron ring ready for Phase I (2016)
 - Single beam with simple background detector.
- Positron damping ring added for Phase II (2018)
 - Beast II + outer Belle II with beam colliding.
- Phase III started February 2019 with the full Belle II detector.
- The nominal energy for run is at Upsilon(4s) with 7 GeV electron and 4 GeV positron beams.
 - Other energies also included.

The Belle II Collaboration

Belle II and LHCb

- Belle II and LHCb have different systematics
 - Two experiments are required to establish NP.
 - LHCb: large $b\bar{b}$ cross-section (LHCb 1 fb⁻¹ ~ Belle II 1 ab ⁻¹). Good sensitivity and S/N with di-muon modes and charged tracks with a vertex.

Belle II Physics Prospects

- Dark sector
- Long lived particles
- Next precision CKM measurements
- CP violation in b → s penguin decays
- Lepton flavor violation in τ decays
- FCNC
- Charm decays
- τ physics
- Hadron spectroscopy

https://confluence.desy.de/display/BI/Snowmass+2021

Long Lived Particles

 December 2020, FSP Workshop focusing on feasibility studies

https://indico.belle2.org/event/2920/

- Additional displacement vertex trigger is needed to enhance the LLP sensitivities.
- A Snowmass White Paper including a proposal of the Gazelle detector

https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF6_RF0_Torben_Ferber-020.pdf

Direct CPV in $B^0 o K^0 \pi^0$ Decays

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$

- Isospin rule was proposed to test SM: 0 or not. Currently, $I_{K\pi} = -0.11 \pm 0.13$
- Belle II measurements on the neutral decay mode: (2021 preliminary)

$$A_{K^0\pi^0} = -0.40^{+0.46}_{-0.44} \pm 0.04, \quad B(B^0 \to K^0\pi^0) = [8.5^{+1.7}_{-1.6} \pm 1.2] \times 10^{-6}$$

τ Mass Measurement

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})}$$

- Select one-prong τ and 3-prong τ pair events.
- The mass is measured from the threshold of the pseudomass variable.

