Transverse Momentum Dependent and collinear densities based on Parton Branching method

S. Taheri Monfared in collaboraton with A. Bermudez Martinez, L.I. Estevez Banos,
F. Hautmann, H. Jung, J. Lidrych, M. M. Morentin, A. Lelek, Q. Wang, H. Yang

- Phys. Lett. B 817 (2021), 136299 [arXiv:2102.01494]
- arXiv: 2106.09791

July 16, 2021

Outline

(1) Recap of Parton Branching method
(2) Four- and five-flavour PB TMDs and corresponding parton showers
(3) Photon TMD and its application

Preface: The ansatz

TMDs-what is it?

- TMDs: Transverse Momentum Dependent parton distributions
- extended collinear PDFs : transverse momentum effects from intrinsic $k_{t}+$ evolution Why TMD?
- small transverse momentum phenomena
- small-x phenomena

New approach: Parton Branching (PB) method

- evolution of TMDs and collinear PDFs at LO, NLO \& NNLO
- automatically contain soft gluon resummation (at NLL identical to CSS approach)
- determination of TMDs from the fully exclusive solution
- unique feature : backward evolution fully determines the TMD shower

Today's plan

- How to obtain PB TMDs?
- How to use PB TMDs to obtain predictions?

```
Phys. Lett. B 772 (2017), 446-451
```

JHEP 01 (2018), 070
CASCADE3 arXiv 2101.10221

Recap of Parton Branching method

- Including the Δ_{s} in the differential form of the DGLAP eq.

$$
f_{a}\left(x, \mu^{2}\right)=f_{a}\left(x, \mu_{0}^{2}\right) \Delta_{s}\left(\mu^{2}\right)+\sum_{b} \int_{x}^{z M} \frac{d z}{z} \int_{\mu_{0}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \cdot \frac{\Delta_{s}\left(\mu^{2}\right)}{\Delta_{s}\left(\mu^{\prime 2}\right)} P^{(R)}(z) f_{b}\left(\frac{x}{z}, \mu^{\prime 2}\right)
$$

- the solution of the integral equation has the form of a Neumann series with the following terms:

$$
\begin{aligned}
& f_{0}\left(x, \mu^{2}\right)=f\left(x, \mu_{0}^{2}\right) \Delta_{s}\left(\mu^{2}\right) \\
& f_{1}\left(x, \mu^{2}\right)=f\left(x, \mu_{0}^{2}\right) \Delta_{s}\left(\mu^{2}\right) \\
& +\int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \frac{\Delta_{s}\left(\mu^{2}\right)}{\Delta_{s}\left(\mu^{\prime 2}\right)} \int \frac{d z}{z} p^{R}(z) f\left(x / z, \mu_{0}^{2}\right) \Delta\left(\mu^{\prime 2}\right)
\end{aligned}
$$

- iterating with second branching and so on to get the full solution
- PB evolution generates every single branching : all kinematic variables and combination between them can be calculated at every step

$$
f_{0, b}\left(x, \mathbf{k}_{\mathbf{t}, 0}^{2}, \mu_{0}^{2}\right)=f_{0, b}\left(x, \mu_{0}^{2}\right) \cdot \exp \left(-\left|k_{\mathrm{T}, 0}^{2}\right| / \sigma^{2}\right) \sigma^{2}=q_{0}^{2} / 2 \& q_{0}=0.5 \mathrm{GeV}
$$

Phys. Rev. D 99 (2019) no. 7, 074008

How to obtain collinear/TMD PDFs form PB method? QCD fit to HERA data

Convolution of kernel with starting distribution : a new kernel for the TMD distributions

$$
\begin{aligned}
x f_{a}\left(x, \mu^{2}\right) & =\int d x^{\prime} \mathcal{A}_{0, b}\left(x^{\prime}\right) \cdot \frac{x}{x^{\prime}} \tilde{\mathcal{A}}_{a}^{b}\left(\frac{x}{x^{\prime}}, \mu^{2}\right) \\
x f_{a}\left(x, \mathbf{k}_{\mathbf{t}}^{2}, \mu^{2}\right) & =\int d x^{\prime} \mathcal{A}_{0, b}\left(x^{\prime}, \mathbf{k}_{\mathbf{t}, 0}\right) \cdot \frac{x}{x^{\prime}} \tilde{\mathcal{A}}_{a}^{b}\left(\frac{x}{x^{\prime}}, \mathbf{k}_{\mathbf{t}}^{2}, \mu^{2}\right)
\end{aligned}
$$

Fit performed using \times Fitter frame (with collinear coefficient functions at NLO) Phys. Rev. D 99 (2019) no. 7, 074008

5FLNS:

- full coupled evolution with all flavors $\& \alpha_{s}\left(M_{Z}^{n_{f}=5}\right)=0.118$
- HERAPDF parametrization form
- using full HERAI+II inclusive DIS data $\left(3.5<Q^{2}<50000 \mathrm{GeV}^{2} \& 4.10^{-5}<x<0.65\right)$
- $\chi^{2} /$ dof $=1.21$

4FLNS:

- the same functional form \& data as 5FL - parameters are re-fitted
- $m_{b} \rightarrow \infty \& \alpha_{s}\left(M_{Z}^{n_{f}=4}\right)=0.1128$
- $\chi^{2} /$ dof $=1.25$

four- and five-flavour PB TMDs and corresponding parton showers

arXiv:2106.09791

Collinear and TMD PDFs in 4FLVN \& 5FLVN

The \bar{u}, charm \& bottom and gluon 4FLVN and 5FLVN collinear PDFs versus x

The \bar{u}, charm, gluon \& bottom 4FLVN and 5FLVN TMDs versus k_{t}

TMDs are plotted with TMDPLOTTER: arXiv:2103.09741

Predictions based on 4FLVN \& 5FLVN PDFs compared to a measurement by CMS and ATLAS

The hard processes calculation with the MADGRAPH5_AMC@NLO package :

- 5FLVNS: Z + one parton process

$$
p p \rightarrow I^{+} I^{-}+\mathrm{j}, p=u, d, s, c, b, g, \bar{u}, \bar{d}, \bar{s}, \bar{c}, \bar{b}
$$

- 4FLVNS : $Z+q \bar{q}$ process

$$
p p \rightarrow I^{+} I^{-}+b \bar{b}, p=u, d, s, c, g, \bar{u}, \bar{d}, \bar{s}, \bar{c}
$$

- HERWIG6 subtraction terms

The PB-TMD parton shower implemented in CASCADE3: Eur. Phys. J. C 81 (2021) 425

- the 5FLVNS and 4FLVNS PB-TMDs.

(a) $z+b \bar{b} 4$ FLNS

(b) $z+b 5$ FLNS

Role of PB-TMD shower in 4FLVN \& 5FLVN

Differential cross section for $Z+b \bar{b}$ as a function of $\Delta \phi_{b \bar{b}}$ by CMS Eur. Phys. J.C 77 (2017) 751

- 4FL : weakly depends on PB-TMD and parton shower
- 5FL: significant contribution coming from parton shower

Very good consistency of both approaches

First determination of TMD photon densities

Phys. Lett. B 817 (2021), 136299
complete set of TMD and collinear photon densities over full phase space

- photon density appears when evolving parton distributions with QED corrections ($\alpha \sim \alpha_{s}^{2}$)
- photons generated by perturbative radiation using Parton Branching method
- QCD partons constrained by fit to HERA data

$$
\begin{aligned}
& x g(x)=A_{g} x^{B_{g}}(1-x)^{C_{g}}-A_{g}^{\prime} x^{B_{g}^{\prime}}(1-x)^{C_{g}^{\prime}} \\
& x u_{v}(x)=A_{u_{v}} x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}\left(1+E_{u_{v}} x^{2}\right) \\
& x d_{v}(x)=A_{d_{v}} x^{B d_{v}}(1-x)^{C_{d_{v}}} \\
& x \bar{U}(x)=A_{\bar{U}} x^{B} \bar{U}(1-x)^{C_{\bar{U}}}\left(1+D_{\bar{U}^{x}}\right), \\
& x \bar{D}(x)=A_{\bar{D}} x^{B} \bar{D}(1-x)^{C_{\bar{D}}} .
\end{aligned}
$$

- fit is as good as QCD NLO $\chi^{2} /$ dof $=1.21$

Collinear and TMD photon density

collinear photon PDF extracted from fit to HERA data

TMD parton densities can be obtained within the PB method

Measurement of the differential Drell-Yan cross section in proton-proton collisions at 13 TeV (CMS-2018-I1711625) JHEP 12 (2019), 059

Matrix Elements: MC@NLO

- Standard Drell-Yan :
$q q \rightarrow 1^{+} 1^{-}$
- PI process : $\gamma \gamma \rightarrow 1^{+} I^{-}$

calculation with CASCADE3

Eur. Phys. J. C 81 (2021) no.5, 425

CMS, 13 TeV , DY, full phase-space

Phys. Lett. B 817 (2021), 136299 presented at Moriond'21 and DIS,21

Conclusion

- PB method to solve DGLAP equation at LO, NLO, NNLO.
- New PDF sets determined within the PB approach:

1 4FL collinear and TMD PDF
2 photon collinear and TMD PDF

- Application of new PB-TMD sets:

14 FL and 5FL PB-TMD distributions used to calculate $Z+b \bar{b}$ production: the evolution of the PB-TMD parton densities as well as in the PB-TMD parton shower is checked.
2 photon PB-TMD densities used to predict the transverse momentum spectra of very high mass lepton pairs from both Drell-Yan production and Photon-Initiated lepton processes.

- Outlook:
- PDFs for heavy gauge bosons
- PB-TMD determination from global fit

Thank you

