Light-cone PDFs \& GPDs from Lattice QCD:

 selected results, successes and challenges
(Focus on proton)

Martha Constantinou

T Temple University

50 ${ }^{\text {th }}$ International Symposium on
Multiparticle Dynamics 2021

July 13, 2021

ISMD2021

x-dependent

distributions

Novel Approaches

(Besides Mellin moments)

Hadronic tensor
Auxiliary scalar quark
Fictitious heavy quark
Auxiliary scalar quark Higher moments
Quasi-distributions (LaMET)
Compton amplitude and OPE Pseudo-distributions

Good lattice cross sections
[K.F. Liu, S.J. Dong, PRL 72 (1994) 1790, K.F. Liu, PoS(LATTICE 2015) 115]
[U. Aglietti et al., Phys. Lett. B441, 371 (1998), arXiv:hep-ph/9806277]
[W. Detmold, C. J. D, Lin, Phys. Rev. D73, 014501 (2006)]
[V. Braun \& D. Mueller, Eur. Phys. J. C55, 349 (2008), arXiv:0709.1348]
[Z. Davoudi, M. Savage, Phys. Rev. D86, 054505 (2012)]
[X. Ji, PRL 110 (2013) 262002, arXiv:1305.1539; Sci. China PPMA. 57, 1407 (2014)]
[A. Chambers et al. (QCDSF), PRL 118, 242001 (2017), arXiv:1703.01153]
[A. Radyushkin, Phys. Rev. D 96, 034025 (2017), arXiv:1705.01488]
[Y-Q Ma \& J. Qiu, Phys. Rev. Lett. 120, 022003 (2018), arXiv:1709.03018]

Novel Approaches
 (Besides Mellin moments)

Hadronic tensor
Auxiliary scalar quark
Fictitious heavy quark
Auxiliary scalar quark Higher moments
Quasi-distributions (LaMET)
Compton amplitude and OPE Pseudo-distributions
Good lattice cross sections
[K.F. Liu, S.J. Dong, PRL 72 (1994) 1790, K.F. Liu, PoS(LATTICE 2015) 115]
[U. Aglietti et al., Phys. Lett. B441, 371 (1998), arXiv:hep-ph/9806277]
[W. Detmold, C. J. D, Lin, Phys. Rev. D73, 014501 (2006)]
[V. Braun \& D. Mueller, Eur. Phys. J. C55, 349 (2008), arXiv:0709.1348]
[Z. Davoudi, M. Savage, Phys. Rev. D86, 054505 (2012)]
[X. Ji, PRL 110 (2013) 262002, arXiv:1305.1539; Sci. China PPMA. 57, 1407 (2014)]
[A. Chambers et al. (QCDSF), PRL 118, 242001 (2017), arXiv:1703.01153]
[A. Radyushkin, Phys. Rev. D 96, 034025 (2017), arXiv:1705.01488]
[Y-Q Ma \& J. Qiu, Phys. Rev. Lett. 120, 022003 (2018), arXiv:1709.03018]

Useful reviews of methods

- A guide to light-cone PDFs from Lattice QCD: an overview of approaches, techniques and results K. Cichy \& M. Constantinou (invited review) Advances in HEP 2019, 3036904, arXiv:1811.07248
- Large Momentum Effective Theory
X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, and Y. Zhao (2020), 2004.03543
- The x-dependence of hadronic parton distributions: A review on the progress of lattice QCD M. Constantinou (invited review) Eur. Phys. J. A 57 (2021) 2, 77, arXiv:2010.02445

Access of PDFs \& GPDs on a Euclidean Lattice

Matrix elements of non-local operators (space-like separated fields) with boosted hadrons

$$
\mathscr{M}\left(P_{f}, P_{i}, z\right)=\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

M. Constantinou, ISMD 2021

Access of PDFs \& GPDs on a Euclidean Lattice

Matrix elements of non-local operators (space-like separated fields) with boosted hadrons

$$
\mathscr{M}\left(P_{f}, P_{i}, z\right)=\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002] [X. Ji, Sci. China Phys. M.A. 57 (2014) 1407]

$$
\tilde{q}_{\Gamma}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z} \mathscr{M}\left(P_{f}, P_{i}, z\right)
$$

pseudo-ITD [A. Radyushkin, PRD 96, 034025 (2017)]

Access of PDFs \& GPDs on a Euclidean Lattice

Matrix elements of non-local operators (space-like separated fields) with boosted hadrons

$$
\mathscr{M}\left(P_{f}, P_{i}, z\right)=\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002] [X. Ji, Phys. Rev. Lett. 110 (2013) 262002] quasi-PDFs
[X. Ji, Sci. China Phys. M.A. 57 (2014) 1407]

$$
\tilde{q}_{\Gamma}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z} \mathscr{M}\left(P_{f}, P_{i}, z\right)
$$

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\frac{\mathscr{M}\left(\nu, z^{2}\right) / \mathscr{M}(\nu, 0)}{\mathscr{M}\left(0, z^{2}\right) / \mathscr{M}(0,0)} \quad(v=z \cdot p)
$$

Light-cone PDFs \& GPDs

Access of PDFs \& GPDs on a Euclidean Lattice

Matrix elements of non-local operators (space-like separated fields) with boosted hadrons

$$
\mathscr{M}\left(P_{f}, P_{i}, z\right)=\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002] [X. Ji, Phys. Rev. Lett. 110 (2013) 262002]
[X. Ji, Sci. China Phys. M.A. 57 (2014) 1407]

$$
\tilde{q}_{\Gamma}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z} \mathscr{M}\left(P_{f}, P_{i}, z\right)
$$

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\frac{\mathscr{M}\left(\nu, z^{2}\right) / \mathscr{M}(\nu, 0)}{\mathscr{M}\left(0, z^{2}\right) / \mathscr{M}(0,0)} \quad(v=z \cdot p)
$$

Light-cone PDFs \& GPDs
Calculation very taxing!

- length of the Wilson line (z)
- nucleon momentum boost (P_{3})
- momentum transfer (t)
- skewness (ξ)

Access of PDFs \& GPDs on a Euclidean Lattice

Matrix elements of non-local operators (space-like separated fields) with boosted hadrons

$$
\mathscr{M}\left(P_{f}, P_{i}, z\right)=\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002] [X. Ji, Phys. Rev. Lett. 110 (2013) 262002]
[X. Ji, Sci. China Phys. M.A. 57 (2014) 1407]

$\tilde{q}_{\Gamma}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z} \mathscr{M}\left(P_{f}, P_{i}, z\right)$
$\mathfrak{M}\left(\nu, z^{2}\right)=\frac{\mathscr{M}\left(\nu, z^{2}\right) / \mathscr{M}(\nu, 0)}{\mathscr{M}\left(0, z^{2}\right) / \mathscr{M}(0,0)}$

Light-cone PDFs \& GPDs
Calculation very taxing!

- length of the Wilson line (z)
- nucleon momentum boost (P_{3}) \} PDFs, GPDs
$\left.\begin{array}{l}\text { - momentum transfer }(t) \\ \text { - skewness }(\xi)\end{array}\right\}$ GPDs

Successes

Selected Results

M. Constantinou, ISMD 2021

PDFs at physical pion mass

PDFs at physical pion mass

First complete study of quasi-PDFs including all steps

$\beta=2.10$		$c_{\mathrm{SW}}=1.57751, \quad a=0.0938(3)(2) \mathrm{fm}$
$48^{3} \times 96$	$a \mu=0.0009 \quad m_{N}=0.932(4) \mathrm{GeV}$	
$L=4.5 \mathrm{fm}$	$m_{\pi}=0.1304(4) \mathrm{GeV} \quad m_{\pi} L=2.98(1)$	

[C. Alexandrou et al. (ETMC), PRL 121 (2018) 112001, arXiv:1803.02685]
M. Constantinou, ISMD 2021

PDFs at physical pion mass

* First complete study of quasi-PDFs including all steps

$\beta=2.10$		$c_{\mathrm{SW}}=1.57751, \quad a=0.0938(3)(2) \mathrm{fm}$
$48^{3} \times 96$	$a \mu=0.0009 \quad m_{N}=0.932(4) \mathrm{GeV}$	
$L=4.5 \mathrm{fm}$	$m_{\pi}=0.1304(4) \mathrm{GeV} \quad m_{\pi} L=2.98(1)$	

[C. Alexandrou et al. (ETMC), PRL 121 (2018) 112001, arXiv:1803.02685]

First complete study of pseudo-PDFs

- Approaching the physical point and increasing momentum leads to large statistical uncertainties.
- Regions with large errors: few data [B. Joo et al. (HasStruc), PRL 125, (2020) 23, arXiv:2004.01687]

PDFs at physical pion mass

* First complete study of quasi-PDFs including all steps

| $\beta=2.10$, | $c_{\mathrm{SW}}=1.57751, \quad a=0.0938(3)(2) \mathrm{fm}$ |
| :---: | :--- | :--- |
| $48^{3} \times 96$ | $a \mu=0.0009 \quad m_{N}=0.932(4) \mathrm{GeV}$ |
| $L=4.5 \mathrm{fm}$ | $m_{\pi}=0.1304(4) \mathrm{GeV} \quad m_{\pi} L=2.98(1)$ |

[C. Alexandrou et al. (ETMC), PRL 121 (2018) 112001, arXiv:1803.02685]

[M. Bhat et al. (ETMC), arXiv:2005.02102]

First complete study of pseudo-PDFs

[B. Joo et al. (HasStruc), PRL 125, (2020) 23, arXiv:2004.01687]

- Approaching the physical point and increasing momentum leads to large statistical uncertainties.
- Regions with large errors: few data

Lattice data comparison

- Different formulations \& same method (clover, twisted mass)
- Same formulation for different methods (quasi, pseudo)

Lattice data comparison

- Different formulations \& same method (clover, twisted mass)
- Same formulation for different methods (quasi, pseudo)

Incorporating lattice PDFs in global analyses

Can lattice data assist in regions where experimental data are sparse, imprecise, or non-existing?

Lattice data comparison

- Different formulations \& same method (clover, twisted mass)
- Same formulation for different methods (quasi, pseudo)

Incorporating lattice PDFs in global analyses

Can lattice data assist in regions where experimental data are sparse, imprecise, or non-existing?

* Lattice and exp. data sets data within the same global analysis
* Significant impact for helicity PDF
* Consistent picture with JAM for unpolarized PDF

[J. Bringewatt, N. Sato, W. Melnitchouk, J. Qiu, F. Steffens, M. Constantinou, PRD 103 (2021) 016003, arXiv:2010.00548]

Lattice data comparison

- Different formulations \& same method (clover, twisted mass)
- Same formulation for different methods (quasi, pseudo)

Incorporating lattice PDFs in global analyses

Can lattice data assist in regions where experimental data are sparse, imprecise, or non-existing?

* Lattice and exp. data sets data within the same global analysis
\star Significant impact for helicity PDF
* Consistent picture with JAM for unpolarized PDF

[J. Bringewatt, N. Sato, W. Melnitchouk, J. Qiu, F. Steffens, M. Constantinou, PRD 103 (2021) 016003, arXiv:2010.00548]

Recent focus: Systematic Uncertainties

Recent focus: Systematic Uncertainties

Finite-volume effects (Could be sizable)
[R. Briceno et al., PRD 98 (2018) 014511, arXiv:1805.01034]
Ensembles: $\mathrm{a}=0.12 \mathrm{fm}, \mathrm{L}=2.88,3.84,4.8 \mathrm{fm}\left(\mathrm{m}_{\pi}=220 \mathrm{MeV}\right)$

Recent focus: Systematic Uncertainties

Finite-volume effects (Could be sizable)
[R. Briceno et al., PRD 98 (2018) 014511, arXiv:1805.01034]
Ensembles: $\mathrm{a}=0.12 \mathrm{fm}, \mathrm{L}=2.88,3.84,4.8 \mathrm{fm}\left(\mathrm{m}_{\pi}=220 \mathrm{MeV}\right)$

[Lin \& Zhang, PRD 100 (2019) 074502]

Discretization effects
[Green et al., PRD 101 (2020) 7, 074509, arXiv:2002.09408]

Ensembles: $\mathrm{a}=0.042 \mathrm{fm}, \mathrm{L}=2.7 \mathrm{fm}\left(\mathrm{m}_{\pi}=310 \mathrm{MeV}\right)$

[Fan et al., PRD 102 (2020) 074504, arXiv:2005.12015]

Recent focus: Systematic Uncertainties

Finite-volume effects (Could be sizable)
[R. Briceno et al., PRD 98 (2018) 014511, arXiv:1805.01034]

Ensembles: $\mathrm{a}=0.12 \mathrm{fm}, \mathrm{L}=2.88,3.84,4.8 \mathrm{fm}\left(\mathrm{m}_{\pi}=220 \mathrm{MeV}\right)$

[Lin \& Zhang, PRD 100 (2019) 074502]

* Continuum limit

Ensembles: $\mathrm{a}=0.094,0.082,0.064 \mathrm{fm}, \mathrm{L}=2.2 \mathrm{fm}\left(\mathrm{m}_{\pi} \sim 370 \mathrm{MeV}\right)$

* Discretization effects

[Green et al., PRD 101 (2020) 7, 074509, arXiv:2002.09408]

Ensembles: $\mathrm{a}=0.042 \mathrm{fm}, \mathrm{L}=2.7 \mathrm{fm}\left(\mathrm{m}_{\pi}=310 \mathrm{MeV}\right)$

[Fan et al., PRD 102 (2020) 074504, arXiv:2005.12015]
[Alexandrou et al., PRD 103 (2021) 094512, arXiv:2011..00964]

Recent focus: Systematic Uncertainties

Finite-volume effects (Could be sizable)
[R. Briceno et al., PRD 98 (2018) 014511, arXiv:1805.01034]
Ensembles: $\mathrm{a}=0.12 \mathrm{fm}, \mathrm{L}=2.88,3.84,4.8 \mathrm{fm}\left(\mathrm{m}_{\pi}=220 \mathrm{MeV}\right)$

[Lin \& Zhang, PRD 100 (2019) 074502]

Continuum limit

Ensembles: $\mathrm{a}=0.094,0.082,0.064 \mathrm{fm}, \mathrm{L}=2.2 \mathrm{fm}\left(\mathrm{m}_{\pi} \sim 370 \mathrm{MeV}\right)$

[Alexandrou et al., PRD 103 (2021) 094512, arXiv:2011..00964]

* Discretization effects

[Green et al., PRD 101 (2020) 7, 074509, arXiv:2002.09408]

Ensembles: $\mathrm{a}=0.042 \mathrm{fm}, \mathrm{L}=2.7 \mathrm{fm}\left(\mathrm{m}_{\pi}=310 \mathrm{MeV}\right)$

[Fan et al., PRD 102 (2020) 074504, arXiv:2005.12015]

* Continuum limit - higher twist effects

Ensembles: $a=0.075,0.065,0.048 \mathrm{fm}, \mathrm{L}=2.4 \mathrm{fm}\left(\mathrm{m}_{\pi} \sim 440 \mathrm{MeV}\right)$

Flavor decomposition of PDFs

Major achievement of the field (due to theoretical and algorithmic developments)

" 0 :

Flavor decomposition of PDFs

* Major achievement of the field (due to theoretical and algorithmic developments)

太 Individual-quark unpolarized, helicity, transversity PDFs

[C. Alexandrou et al., PRL 126 (2021) 10, arXiv:2009.13061; C. Alexandrou et al., arXiv:2106.16065]

* Clear signal for strange-quark PDFs (purely disconnected)
t Helicity PDF: most sizable disconnected light-quark contributions
* Mixing with gluon PDFs to be addressed

GPDs

* GPDs provide information on spatial distribution of partons inside the hadron, and its mechanical properties (OAM, pressure, etc.)
[M. Burkardt, Phys.Rev.D62 071503 (2000), hep-ph/0005108]
[M. V. Polyakov, Phys. Lett. B555 (2003) 57, hep-ph/0210165]

Experimentally accessed in DVCS and DVMP
[X. D. Ji, Phys. Rev. Lett. 78, 610 (1997), hep-ph/9603249] (Halls A,B,C (JLab), PHENIX, STAR, HERMES, COMPASS, GSI, BELLE, J-PARC)

Experimentally, GPDs are not well-constrained:

- independent measurements to disentangle GPDs
- limited coverage of kinematic region
- data on certain GPDs
- indirectly related to GPDs through the Compton FFs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)

Proton unpolarized \& helicity GPDs

Proton unpolarized \& helicity GPDs

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	$32^{3} \times 64$

ERBL region $(|x|<\xi)$:

- $f_{1}(x)$ dominant
- $H(x, \xi)$ suppressed compared to $H(x, 0)$
\downarrow DGLAP region $(\xi<|x|<1)$:
- $H(x, 1 / 3)$ similar to $H(x, 0)$

Proton unpolarized \& helicity GPDs

Proton unpolarized \& helicity GPDs

M. Constantinou, ISMD 2021

Twist-classification of PDFs

Higher-twist contributions:

- Lack density interpretation, but can be sizable
- Sensitive to soft dynamics
- challenging to probe experimentally and isolate from leading-twist [Defurne et al., PRL 117, 26 (2016); Defurne et al., Nature Commun. 8, 1 (2017)]

Twist-classification of PDFs

Higher-twist contributions:

- Lack density interpretation, but can be sizable
- Sensitive to soft dynamics
- challenging to probe experimentally and isolate from leading-twist [Defurne et al., PRL 117, 26 (2016); Defurne et al., Nature Commun. 8, 1 (2017)]
- $g_{2}(x)\left(g_{2}(x)=g_{1}(x)+g_{T}(x)\right)$ related to the transverse force acting on the active quark in DIS off a transversely polarized nucleon immediately after it has absorbed the virtual photon
- $g_{2}(x)$ can be separated from twist-2 helicity PDF
- $h_{L}(x)$ accessed via di-hadron single spin asymmetries
[Gliske et al., PRD 90 (2014) 11, 114027, arXiv:1408.5721]

Twist-3 counterpart as sizable as twist-2
Burkhardt-Cottingham sum rule important check

$$
\int_{-1}^{1} d x g_{1}(x)-\int_{-1}^{1} d x g_{T}(x)=0.01(20)
$$

[S. Bhattacharya et al., PRD 102 (2020) 11 (Editors Selection), arXiv:2004.04130]

Twist-3 $\mathrm{g}_{\mathrm{T}}(\mathrm{x}) \& \mathrm{~h}_{\mathrm{L}}(\mathrm{x})$ PDF

[S. Bhattacharya et al., PRD 102 (2020) 11 (Editors Selection), arXiv:2004.04130]

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	$32^{3} \times 64$

Twist-3 counterpart as sizable as twist-2
Burkhardt-Cottingham sum rule important check

$$
\int_{-1}^{1} d x g_{1}(x)-\int_{-1}^{1} d x g_{T}(x)=0.01(20)
$$

WW approximation: $\quad g_{T}^{W W}(x)=\int_{x}^{1} \frac{d y}{y} g_{1}(y)$
twist-3 $g_{T}(x)$ determined by the twist-2 $g_{1}(x)$

Twist-3 $\mathrm{gt}_{\mathrm{t}}(\mathrm{x}) \& \mathrm{~h}_{\mathrm{L}}(\mathrm{x})$ PDF

[S. Bhattacharya et al., PRD 102 (2020) 11 (Editors Selection), arXiv:2004.04130]
Twist-3 counterpart as sizable as twist-2
Burkhardt-Cottingham sum rule important check

$$
\int_{-1}^{1} d x g_{1}(x)-\int_{-1}^{1} d x g_{T}(x)=0.01(20)
$$

WW approximation: $\quad g_{T}^{\mathrm{ww}}(x)=\int_{x}^{1} \frac{d y}{y} g_{1}(y)$
twist-3 $g_{T}(x)$ determined by the twist-2 $g_{1}(x)$

- $g_{T}(x)$ agrees with $g_{T}^{\mathrm{WW}}(x)$ for $x<0.5$ (violations up to 30-40\% possible)
- Violations of 15-40\% expected from experimental data
[A. Accardi et al., JHEP 11 (2009) 093]

Twist-3 $\mathrm{gt}_{\mathrm{t}}(\mathrm{x}) \& \mathrm{~h}_{\mathrm{L}}(\mathrm{x})$ PDF

[S. Bhattacharya et al., PRD 102 (2020) 11 (Editors Selection), arXiv:2004.04130]
Twist-3 counterpart as sizable as twist-2
Burkhardt-Cottingham sum rule important check

$$
\int_{-1}^{1} d x g_{1}(x)-\int_{-1}^{1} d x g_{T}(x)=0.01(20)
$$

WW approximation: $\quad g_{T}^{\mathrm{Ww}}(x)=\int_{x}^{1} \frac{d y}{y} g_{1}(y)$ twist-3 $g_{T}(x)$ determined by the twist-2 $g_{1}(x)$

- $g_{T}(x)$ agrees with $g_{T}^{\mathrm{WW}}(x)$ for $x<0.5$ (violations up to $30-40 \%$ possible)
- Violations of 15-40\% expected from experimental data
[A. Accardi et al., JHEP 11 (2009) 093]

$$
h_{L}^{\mathrm{WW}}(x)=2 x \int_{x}^{1} d y \frac{h_{1}(y)}{y^{2}}
$$

[S. Bhattacharya et al., arXiv:2107.02574]

- Lattice data suggest that twist-3 $h_{L}(x)$ determined from twist-2 counterpart within uncertainties

Challenges

M. Constantinou, ISMD 2021

Challenges of calculations

\star Statistical noise increases with P_{3}, t
use of momentum smearing method

Challenges of calculations

\star Statistical noise increases with P_{3}, t
use of momentum smearing method

Challenges of calculations

\star Statistical noise increases with P_{3}, t
use of momentum smearing method

- Implementation in GPDs nontrivial due to momentum transfer
- Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t
- Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs
- Nonzero skewness
nontrivial matching
- \mathbf{P}_{3} must be chosen carefully due to UV cutoff ($a^{-1} \sim 2 \mathrm{GeV}$)

Challenges of calculations

\star Statistical noise increases with P_{3}, t
use of momentum smearing method

- Implementation in GPDs nontrivial due to momentum transfer

Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t

* Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs
- Nonzero skewness
nontrivial matching
↔ P_{3} must be chosen carefully due to UV cutoff ($a^{-1} \sim 2 \mathrm{GeV}$)

Challenges of calculations

\star Statistical noise increases with P_{3}, t
use of momentum smearing method

- Implementation in GPDs nontrivial due to momentum transfer

Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t

* Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs

Ref.	$m_{\pi}(\mathrm{MeV})$	$P_{3}(\mathrm{GeV})$	$\left.\frac{n}{s}\right\|_{z=0}$
quasi/pseudo [59,95]	130	1.38	6%
pseudo [92]	172	2.10	8%
current-current [98]	278	1.65	$19 \%^{\star}$
quasi [72]	300	1.72	$6 \%^{\dagger}$
quasi/pseudo [77]	300	2.45	$8 \%^{\dagger}$
quasi/pseudo [70]	310	1.84	$3 \%^{\dagger}$
twist-3 [148]	260	1.67	15%
s-quark quasi [113]	260	1.24	31%
s-quark quasi [112]	310	1.30	$43 \%^{\star \star}$
gluon pseudo [134]	310	1.73	39%
quasi-GPDs [170] $-t=0.69 \mathrm{GeV}^{2}$	260	1.67	23%
quasi-GPDs [169] $-t=0.92 G \mathrm{GV}^{2}$	310	1.74	59%

\dagger At $T_{\text {sink }}<1 \mathrm{fm}$.
\star At smallest z value used, $z=2$.
$\star \star$ At maximum value of imaginary part, $z=4$.
[M. Constantinou, (Invited review) EPJA 57 (2021) 77]

* Nonzero skewness
nontrivial matching
P_{3} must be chosen carefully due to UV cutoff $\left(a^{-1} \sim 2 \mathrm{GeV}\right)$

Challenges of calculations

太 Statistical noise increases with P_{3}, t
use of momentum smearing method

- Implementation in GPDs nontrivial due to momentum transfer

Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t

* Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs

Ref.	$m_{\pi}(\mathrm{MeV})$	$P_{3}(\mathrm{GeV})$	$\left.\frac{n}{s}\right\|_{z=0}$
quasi/pseudo [59,95]	130	1.38	6%
pseudo [92]	172	2.10	8\%
current-current [98]	278	1.65	19\% *
quasi [72]	300	1.72	$6 \%{ }^{\dagger}$
quasi/pseudo [77]	300	2.45	$8 \%^{\dagger}$
quasi/pseudo [70]	310	1.84	$3 \%^{\dagger}$
twist-3 [148]	260	1.67	15\%
s-quark quasi [113]	260	1.24	31\%
s-quark quasi [112]	310	1.30	43\% **
gluon pseudo [134]	310	1.73	39%
quasi-GPDs [170] $-t=0.69 \mathrm{GeV}^{2}$	260	1.67	23\%
$\begin{aligned} & \text { quasi-GPDs [169] } \\ & -t=0.92 \mathrm{GeV}^{2} \end{aligned}$	310	1.74	59\%

\dagger At $T_{\text {sink }}<1 \mathrm{fm}$.
\star At smallest z value used, $z=2$.
$\star \star$ At maximum value of imaginary part, $z=4$.
[M. Constantinou, (Invited review) EPJA 57 (2021) 77]

- Nonzero skewness
nontrivial matching
Further increase of momentum at the cost of credibility
- P_{3} must be chosen carefully due to UV cutoff ($a^{-1} \sim 2 \mathrm{GeV}$)

Challenges of calculations

x-dependence reconstruction: Inverse problem
[J. Karpie et al., JHEP 11 (2018) 178, arXiv:1807.10933]
M. Constantinou, ISMD 2021

Challenges of calculations

x-dependence reconstruction: Inverse problem
[J. Karpie et al., JHEP 11 (2018) 178, arXiv:1807.10933]

- Standard Fourier transform ill-defined

$$
\tilde{q}\left(x, P_{3}\right)=\frac{2 P_{3}}{4 \pi} \sum_{z=-z \operatorname{maxex}^{z}}^{z_{\text {max }}} e^{-i x P_{3 s} s} h_{\mathrm{r}}\left(P_{3}, z\right)
$$

- Derivative method problematic

$$
\tilde{q}(x)=\left.h(z) \frac{e^{i x z P_{3}}}{2 \pi i x}\right|_{-z_{\max }} ^{z_{\max }}-\int_{-z_{\max }}^{z_{\max }} \frac{d z}{2 \pi} \frac{e^{i x z P_{3}}}{i x} h^{\prime}(z)
$$

Challenges of calculations

x-dependence reconstruction: Inverse problem
[J. Karpie et al., JHEP 11 (2018) 178, arXiv:1807.10933]

- Standard Fourier transform ill-defined

$$
\tilde{q}\left(x, P_{3}\right)=\frac{2 P_{3}}{4 \pi} \sum_{z=-z_{\max }}^{z_{\max }} e^{-i x P_{z} z} h_{r}\left(P_{3}, z\right)
$$

- Derivative method problematic

$$
\tilde{q}(x)=h(z))\left.^{i \frac{i x z}{i x P_{3}}} \frac{z_{\max }}{2 \pi i x}\right|_{-z_{\max }}-\int_{-z_{\max }}^{z_{\max }} \frac{d z}{2 \pi} \frac{e^{i x z P_{3}}}{i x} h^{\prime}(z)
$$

Advanced PDF reconstructions

- Backus-Gilbert Method
- Neural Network Reconstruction
- Bayesian PDF reconstruction
- Bayes-Gauss-Fourier transform

Challenges of calculations

x-dependence reconstruction: Inverse problem
[J. Karpie et al., JHEP 11 (2018) 178, arXiv:1807.10933]

- Standard Fourier transform ill-defined

$$
\tilde{q}\left(x, P_{3}\right)=\frac{2 P_{3}}{4 \pi} \sum_{z=-z \max }^{z_{\max }} e^{-i i P_{s z} z} h_{r}\left(P_{3}, z\right)
$$

- Derivative method problematic

$$
\tilde{q}(x)=\left.h(z) \frac{e^{i x z P_{3}}}{2 \pi i x}\right|_{-z_{\max }} ^{z_{\max }}-\int_{-z_{\max }}^{z_{\max }} \frac{d z}{2 \pi} \frac{e^{i x z P_{3}}}{i x} h^{\prime}(z)
$$

Advanced PDF reconstructions

- Backus-Gilbert Method
- Neural Network Reconstruction
- Bayesian PDF reconstruction
- Bayes-Gauss-Fourier transform

Challenges of calculations

x-dependence reconstruction: Inverse problem
[J. Karpie et al., JHEP 11 (2018) 178, arXiv:1807.10933]

- Standard Fourier transform ill-defined

$$
\tilde{q}\left(x, P_{3}\right)=\frac{2 P_{3}}{4 \pi} \sum_{z=-z \max }^{z} e^{-i i P_{s x} z} h_{r}\left(P_{3}, z\right)
$$

- Derivative method problematic

$$
\tilde{q}(x)=\left.h(z) \frac{e^{i x z P_{3}}}{2 \pi i x}\right|_{-z_{\max }} ^{z_{\max }}-\int_{-z_{\max }}^{z_{\max }} \frac{d z}{2 \pi} \frac{e^{i x z P_{3}}}{i x} h^{\prime}(z)
$$

Advanced PDF reconstructions

- Backus-Gilbert Method
- Neural Network Reconstruction
- Bayesian PDF reconstruction
- Bayes-Gauss-Fourier transform

* Negative-x region: anti-quark contribution currently suffers from enhanced uncertainties

Concluding Remarks

Concluding Remarks

\star The x-dependence of distribution functions is no longer an unrealistic goal
\star Flavor decomposition becoming real possibility
\star Extension to GPDs

* Extension to twist-3 PDFs

> Thank you

TMD Topical Collab.

BACKUP SLIDES

M. Constantinou, ISMD 2021

Transversity PDF

[J. Cammarota et al. (JAM 2020), PRD 102 (2020) 5, 054002, arXiv:2002.08384]

[C. Alexandrou et al. (ETMC), PRD 98 (2018) 091503 (R), arXiv:1807.00232]

* Transversity: an example of the predictive power of lattice QCD

Pseudo-PDFs

\star Position-space formulation, same raw matrix elements as quasi-PDFs, expressed in terms of loffe time $v=z \cdot p$ and z^{2}

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\frac{\mathscr{M}\left(\nu, z^{2}\right) / \mathscr{M}(\nu, 0)}{\mathscr{M}\left(0, z^{2}\right) / \mathscr{M}(0,0)}
$$

(No requirement for large hadron momentum)
loffe time pseudo-distribution function (pseudo-ITD). pseudo-PDFs: Fourier transform of pseudo-ITD (canonical support)

$$
Q\left(\nu, \mu^{2}\right)=\int_{-1}^{1} d x e^{i \nu x} q\left(x, \mu^{2}\right)
$$

\star Valence $q_{v}=q-\bar{q}$ and nonsinglet $q_{v 2 s} \equiv q_{v}+2 \bar{q}=q+\bar{q}$
$\operatorname{Re}\left[Q\left(\nu, \mu^{2}\right)\right]=\int_{0}^{1} d x \cos (\nu x) q_{v}\left(x, \mu^{2}\right), \quad \operatorname{Im}\left[Q\left(\nu, \mu^{2}\right)\right]=\int_{0}^{1} d x \sin (\nu x) q_{v 2 s}\left(x, \mu^{2}\right)$

Nucleon pseudo-PDFs

$\mathrm{N}_{\mathrm{f}}=2+1$ clover fermions (3 ensembles):
[B. Joo et al. (JLab-W\&M), PRL 125, (2020) 23, arXiv:2004.01687]

- Approaching the physical point and increasing momentum leads to large statistical uncertainties.
- Lattice data fitted similar to CJ and MSTW
- Regions with large errors: few data

Nucleon pseudo-PDFs

* $\mathrm{N}_{\mathrm{f}}=2$ twisted-mass fermions at the physical point:

- Statistical accuracy sufficient and gives clear signal for both valence and sea quark contributions
- Different formulations \& same method (clover, twisted mass)
- Same formulation for different methods (quasi, pseudo)

PDFs at physical pion mass

First complete study including all steps
[C. Alexandrou et al. (ETMC), PRL 121 (2018) 112001, arXiv:1803.02685; PRD 99 (2019) 114504, arXiv:1902.00587]

$P=\frac{6 \pi}{L}(0.83 \mathrm{GeV})$			$P=\frac{8 \pi}{L}(1.11 \mathrm{GeV})$			$P=\frac{10 \pi}{L}(1.38 \mathrm{GeV})$		
Ins.	$N_{\text {conf }}$	$N_{\text {meas }}$	Ins.	$N_{\text {conf }}$	$N_{\text {meas }}$	Ins.	$N_{\text {conf }}$	$N_{\text {meas }}$
γ_{3}	100	9600	γ_{3}	425	38250	γ_{3}	811	72990
γ_{0}	50	4800	γ_{0}	425	38250	γ_{0}	811	72990
$\gamma_{5} \gamma_{3}$	65	6240	$\gamma_{5} \gamma_{3}$	425	38250	$\gamma_{5} \gamma_{3}$	811	72990

\star Lattice data at $P_{3}=1.4 \mathrm{GeV}$ approach global fits
P_{3} must be chosen carefully due to UV cutoff ($a^{-1} \sim 2 \mathrm{GeV}$)
Negative-x region: anti-quark contribution currently suffers from enhanced uncertainties

Momentum Dependence of GPDs

\downarrow H-GPD: negligible P_{3}-dependence
E-GPD: convergence between $P_{3}=1.25 \mathrm{GeV}$ and $P_{3}=1.78 \mathrm{GeV}$

E-GPD less accurate than H-GPD
\widetilde{H}-GPD: negligible P_{3}-dependence
For $\xi=0$ only \widetilde{H}-GPD can be obtained

Comparison of zero and nonzero skewness

ERBL-region behavior similar in the unpolarized and polarized case
\downarrow DGLAP-region exhibits hierarchy between PDF and GPD
\uparrow Power-counting analysis less trivial for u-d, but could reveal interesting conclusions for the d-quark distribution
[H. Avakian et al. PRL 99 (2007) 082001, arXiv:0705.1553]
M. Constantinou, ISMD 2021

Twist-3 $\mathrm{gt}_{\mathrm{T}}(\mathrm{x})$ PDF

Clear momentum dependence in matrix elements

Convergence for all momenta

Twist-3 counterpart as sizable as twist-2

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

Burkhardt-Cottingham sum rule important check

$$
\int_{-1}^{1} d x g_{1}(x)-\int_{-1}^{1} d x g_{T}(x)=0.01(20)
$$

[S.Bhattacharya, K.Cichy, M.C, A.Metz, A.Scapellato, F.Steffens, PRD [arXiv:2004.04130]

Twist-3 $\mathrm{g}_{\mathrm{T}}(\mathrm{x})$ PDF

WW approximation:

- twist-3 $g_{T}(x)$ determined by the twist-2 $g_{1}(x): \quad g_{T}^{\mathrm{WW}}(x)=\int_{x}^{1} \frac{d y}{y} g_{1}(y)$

- $g_{T}(x)$ agrees with $g_{T}^{\mathrm{WW}}(x)$ for $x<0.5$ (violations up to $30-40 \%$ possible)
- Violations of 15-40\% expected from experimental data
[A. Accardi et al., JHEP 11 (2009) 093]

$$
d_{2} \text {-moment: } \quad d_{2}=\int d x 3 x^{2}\left[g_{T}(x)-g_{T}^{\mathrm{WW}}(x)\right]
$$

- Investigated experimentally (JLab Hall A) and found $\mathcal{O}\left(10^{-3}\right)$ [D. Flay et al., PRD 94, 5 (2016) 052003, arXiv:1603.03612]
- Similar order of magnitude indicated in our results

Comparison with Dirac \& Pauli Form Factors

Important check: z=0 behavior

Comparison with Dirac \& Pauli Form Factors

Important check: $\mathrm{z=}=0$ behavior

\% No quantitative comparison
$\%$ small pion mass dependence
Q^{2}-behavior of $F_{H}(z=0), F_{E}(z=0)$ qualitatively similar to F_{1}, F_{2}
Rapid increase of statistical errors with increase of P_{3} for same t

