

The Giant Radio Array for Neutrino Detection (GRAND)

Bruno Lago for the GRAND Collaboration

CEFET/RJ – campus Nova Friburgo - Brazil

Outline

- Introduction;
 - Science case;
 - Detection principle;
 - Antenna design;
- Ultra High Energy messengers;
- GRANDProto300;
- Summary.

Introduction

- Ultra High Energy Cosmic Rays UHECR:
 - \circ Extraterrestrial charged particles with energies above $10^{18} \, \text{eV} = 1 \, \text{EeV}$;
 - Origin: Extragalactic although no source identified;
 - Arrival direction studies;
 - Direct search from arrival direction studies;

Direct Search Challenges	Indirect Search Features	
 Mass composition; Galactic and extragalactic magnetic fields; Low statistics at higher energies; Few events above 40 EeV from sources beyond 100 Mpc due to GZK effect; 	 Look for EeV γ rays and ν made by UHECR; No magnetic field deflection; Though not detected cosmogenic γ rays and ν should exist; UHE gamma rays do not reach Earth from beyond 10 Mpc due to interaction with CMB; The universe is transparent to UHE cosmogenic neutrinos, but the expected flux is tiny. 	

Extensive Air Showers Produced by UHECR in the atmosphere; Radio emission; Direct Search Produced by interaction with the geomagnetic field; Little attenuation by the atmosphere; Can be detected far from the shower. Radio Emission Indirect Search **Design** ○ ~ 20 Modular arrays: 10.000 antennas per array; 10.000 km² per array; **Antennas** Radio quiet mountainous regions. Autonomous detection; 50-200 Mhz frequency range. http://grand.cnrs.fr/

Antenna design

- High detection efficiency along the horizon (HorizonAntenna);
- Placed 5 m above the ground (to reduce diffraction of radio waves off the ground);
- Bow tie design, flat response in azimuthal angle and frequency;
- Frequency range (50 MHz 200 MHz):
 - 200 MHz improves the signal-to-noise ratio and lowers the detection threshold;
- Successfully tested in the field (Aug., Dec. 2018).

Alves Batista, R., Lago, B.L. et al. (2019)

Ultra High Energy Messengers – ν

Cosmogenic Neutrinos

- Diffusive flux guaranteed to exist (UHECR + CMB or EBL);
- Large spread in the predicted flux;
 Properties of the UHECRs, Distribution of sources, Neutrino emissivity of the source, UHECR injection spectrum,
 Mass composition of the injection at the source

Neutrinos from sources

- Diffusive flux produced at the sources;
- o GRAND could discover the first sources of UHE neutrinos at a significance of 5σ ;
- A promising way to identify EeV neutrino sources;

Detect transient neutrino emission in coincidence with electromagnetic emission. GRAND makes this possible, due to its excellent angular resolution and large sky coverage.

Ultra High Energy Messengers – ν cont.

Neutrino energy Source-detector baseline κ_n and n model-dependent

 \circ n = -1 (neutrino decay)

o n = 0 (CPT-odd LIV) o n = 1 (CPT-even LIV)

Examples

- Numerous new physics models have intensities $\sim \kappa_n E_{\nu}^n L$
- For EeV neutrinos GRAND is likely to probe
 - $\circ \kappa_n \sim 4 \times 10^{-50} \left(\frac{E_{\nu}}{\text{EeV}}\right)^{-n} \left(\frac{L}{\text{Gpc}}\right)^{-1} \text{EeV}^{1-n}$

Atmospheric and solar ν

- $\kappa_0 \le 10^{-32} \, \text{EeV}$
- Other observables sensitive to new physics
 - Spectral shape: spectral features, peaks, slope change. Benefits from GRAND's high statistics and energy resolution.
 - Angular distribution: extend measurements of neutrino-nucleon cross sections above PeV. Benefits from GRAND's sub degree angular resolution.
 - \circ **Flavor composition**: Flavor ratios are free from relative uncertainties on the flux normalization. Benefits from GRAND's high sensitivity to ν_{τ} and cross analysis with other experiments.

Ultra High Energy Messengers – γ rays

 Cosmogenic UHE gamma rays are also guaranteed to exist, although not detected so far.

Science Goals

- $_{\odot}$ Measure the flux of cosmogenic gamma rays above $10^{10}\,\mathrm{GeV}$ or strongly constrain it;
- Gamma rays point back to their astrophysical sources:
 - \circ GRAND could detect nearby sources of UHE gamma rays up to 10 Mpc;
- The detection of UHE gamma rays would probe the little known diffuse cosmic radio background (CRB)
 - \circ GRAND could be the first experiment to put such indirect constraints on the CRB with its full efficiency for photon detection in the energy range from 10^{10} to 10^{11} GeV.

Ultra High Energy Messengers – Cosmic rays

GRAND statistics

- Precise shape of the cutoff ($\sim 4 \times 10^{10} \text{ GeV}$) \rightarrow source out of power or GZK process;
- Fully efficient for cosmic rays with $E > 10^{10}$ GeV and zenith-angle $65^{\circ} \le \theta \le 85^{\circ}$
 - Aperture of $107\ 000\ \mathrm{km^2\ sr}$ → Exposure of $535\ 000\ \mathrm{km^2\ sr}$ yr after 5 years
 - Around 32 000 events with energies above 10^{10.5} GeV.

Mass composition

Key to understand the galactic to extragalactic transition (ankle of the spectrum);

Arrival directions

 Benefits from high statistics; Full sky coverage; TA hotspot and Auger dipole within the field of view;

Proton air cross section

 \circ Large statistics could extend current measurement up to $\sqrt{s} \sim 2 \times 10^5$ GeV.

Ultra High Energy Messengers – Multi

- By the time GRAND reaches its later stages:
 - Multi-messengers available: neutrinos, cosmic rays, photons, and gravitational waves
 - Future experiments will observe mergers from cosmological distance and have a wide coverage of the electromagnetic spectrum.
- UHE neutrinos from transient point sources + electromag. observations
 - o GRAND's sub degree angular resolution + timing \rightarrow pinpoint neutrino sources from galaxies in the field of view.
- UHE gamma rays from transient point sources
 - o GRAND γ -rays + CTA synchrotron (γ -ray + LSS around source -> E.M. cascade);
 - \circ γ -rays from short GRB + gravitational waves (emitted hours or days earlier).
- Due to its unprecedented UHE neutrino sensitivity, GRAND will be a crucial triggering and follow-up partner in multi-messenger programs

A staged approach with self-standing pathfinders

	GRANDProto300	GRAND10k	GRAND200k
	2021 2025		203X
	autonomous radio detection of very inclined air-showers	1st GRAND sub-array	sensitive all-sky detector
Goals	cosmic rays 10 ^{16.5-18} eV • Galactic/extragalactic transition • muon problem • radio transients	 discovery of EeV neutrinos for optimistic fluxes radio transients (FRBs!) 	1st EeV neutrino detection and/or neutrino astronomy!
Setup	 300 HorizonAntennas over 200 km² Particle detectors (a la HAWC/Auger) Qinhai Province, China 	• 10,000 radio antennas over 10,000 km² • in China	 200,000 antennas over 200,000 km² 20 sub-arrays of 10k antennas on different continents
Budget	2 M€ 100 antennas already paid (China)	13 M € 1500€/unit confident for large contribution from China	300M€ in total 500€/unit to be divided between participating countries

GRANDProto300

- A 300-antenna pathfinder stage of GRAND;
 - 200 km² area;
 - 100 antennas ready to be deployed;
- Aims to validate the GRAND as a standalone radio detection array and realize the self-trigger techniques;
- A test bench to improve:
 - Angular, energy and mass composition reconstruction;
- Detection of very inclined cosmic rays with energies from 30 PeV to 1 EeV;
 - Study the galactic to extragalactic transition energy range;
- Potential sensitivity for radio transients such as Giant Radio Pulses and Fast Radio Bursts.

Summary

GRAND key features:

- The largest UHE observatory -> improved statistics with full sky coverage;
- Modular design using relatively inexpensive antennas;
- Rich Science case;
- Test fundamental physics using:
 - Cosmic rays;
 - Cosmogenic neutrinos;
 - Cosmogenic gamma rays;
 - Multi-messengers;
- GRANDProto300 will serve as a path finder
 - Study the galactic to extragalactic transition;
 - Will begin operation soon.