The Giant Radio Array for Neutrino Detection (GRAND) Bruno Lago for the GRAND Collaboration CEFET/RJ – campus Nova Friburgo - Brazil ## Outline - Introduction; - Science case; - Detection principle; - Antenna design; - Ultra High Energy messengers; - GRANDProto300; - Summary. ## Introduction - Ultra High Energy Cosmic Rays UHECR: - \circ Extraterrestrial charged particles with energies above $10^{18} \, \text{eV} = 1 \, \text{EeV}$; - Origin: Extragalactic although no source identified; - Arrival direction studies; - Direct search from arrival direction studies; | Direct Search Challenges | Indirect Search Features | | |--|--|--| | Mass composition; Galactic and extragalactic magnetic fields; Low statistics at higher energies; Few events above 40 EeV from sources beyond 100 Mpc due to GZK effect; | Look for EeV γ rays and ν made by UHECR; No magnetic field deflection; Though not detected cosmogenic γ rays and ν should exist; UHE gamma rays do not reach Earth from beyond 10 Mpc due to interaction with CMB; The universe is transparent to UHE cosmogenic neutrinos, but the expected flux is tiny. | | ## **Extensive Air Showers** Produced by UHECR in the atmosphere; Radio emission; Direct Search Produced by interaction with the geomagnetic field; Little attenuation by the atmosphere; Can be detected far from the shower. Radio Emission Indirect Search **Design** ○ ~ 20 Modular arrays: 10.000 antennas per array; 10.000 km² per array; **Antennas** Radio quiet mountainous regions. Autonomous detection; 50-200 Mhz frequency range. http://grand.cnrs.fr/ ## Antenna design - High detection efficiency along the horizon (HorizonAntenna); - Placed 5 m above the ground (to reduce diffraction of radio waves off the ground); - Bow tie design, flat response in azimuthal angle and frequency; - Frequency range (50 MHz 200 MHz): - 200 MHz improves the signal-to-noise ratio and lowers the detection threshold; - Successfully tested in the field (Aug., Dec. 2018). Alves Batista, R., Lago, B.L. et al. (2019) ## Ultra High Energy Messengers – ν #### Cosmogenic Neutrinos - Diffusive flux guaranteed to exist (UHECR + CMB or EBL); - Large spread in the predicted flux; Properties of the UHECRs, Distribution of sources, Neutrino emissivity of the source, UHECR injection spectrum, Mass composition of the injection at the source #### Neutrinos from sources - Diffusive flux produced at the sources; - o GRAND could discover the first sources of UHE neutrinos at a significance of 5σ ; - A promising way to identify EeV neutrino sources; Detect transient neutrino emission in coincidence with electromagnetic emission. GRAND makes this possible, due to its excellent angular resolution and large sky coverage. # Ultra High Energy Messengers – ν cont. Neutrino energy Source-detector baseline κ_n and n model-dependent \circ n = -1 (neutrino decay) o n = 0 (CPT-odd LIV) o n = 1 (CPT-even LIV) **Examples** - Numerous new physics models have intensities $\sim \kappa_n E_{\nu}^n L$ - For EeV neutrinos GRAND is likely to probe - $\circ \kappa_n \sim 4 \times 10^{-50} \left(\frac{E_{\nu}}{\text{EeV}}\right)^{-n} \left(\frac{L}{\text{Gpc}}\right)^{-1} \text{EeV}^{1-n}$ #### Atmospheric and solar ν - $\kappa_0 \le 10^{-32} \, \text{EeV}$ - Other observables sensitive to new physics - Spectral shape: spectral features, peaks, slope change. Benefits from GRAND's high statistics and energy resolution. - Angular distribution: extend measurements of neutrino-nucleon cross sections above PeV. Benefits from GRAND's sub degree angular resolution. - \circ **Flavor composition**: Flavor ratios are free from relative uncertainties on the flux normalization. Benefits from GRAND's high sensitivity to ν_{τ} and cross analysis with other experiments. # Ultra High Energy Messengers – γ rays Cosmogenic UHE gamma rays are also guaranteed to exist, although not detected so far. #### Science Goals - $_{\odot}$ Measure the flux of cosmogenic gamma rays above $10^{10}\,\mathrm{GeV}$ or strongly constrain it; - Gamma rays point back to their astrophysical sources: - \circ GRAND could detect nearby sources of UHE gamma rays up to 10 Mpc; - The detection of UHE gamma rays would probe the little known diffuse cosmic radio background (CRB) - \circ GRAND could be the first experiment to put such indirect constraints on the CRB with its full efficiency for photon detection in the energy range from 10^{10} to 10^{11} GeV. # Ultra High Energy Messengers – Cosmic rays #### GRAND statistics - Precise shape of the cutoff ($\sim 4 \times 10^{10} \text{ GeV}$) \rightarrow source out of power or GZK process; - Fully efficient for cosmic rays with $E > 10^{10}$ GeV and zenith-angle $65^{\circ} \le \theta \le 85^{\circ}$ - Aperture of $107\ 000\ \mathrm{km^2\ sr}$ → Exposure of $535\ 000\ \mathrm{km^2\ sr}$ yr after 5 years - Around 32 000 events with energies above 10^{10.5} GeV. #### Mass composition Key to understand the galactic to extragalactic transition (ankle of the spectrum); #### Arrival directions Benefits from high statistics; Full sky coverage; TA hotspot and Auger dipole within the field of view; #### Proton air cross section \circ Large statistics could extend current measurement up to $\sqrt{s} \sim 2 \times 10^5$ GeV. # Ultra High Energy Messengers – Multi - By the time GRAND reaches its later stages: - Multi-messengers available: neutrinos, cosmic rays, photons, and gravitational waves - Future experiments will observe mergers from cosmological distance and have a wide coverage of the electromagnetic spectrum. - UHE neutrinos from transient point sources + electromag. observations - o GRAND's sub degree angular resolution + timing \rightarrow pinpoint neutrino sources from galaxies in the field of view. - UHE gamma rays from transient point sources - o GRAND γ -rays + CTA synchrotron (γ -ray + LSS around source -> E.M. cascade); - \circ γ -rays from short GRB + gravitational waves (emitted hours or days earlier). - Due to its unprecedented UHE neutrino sensitivity, GRAND will be a crucial triggering and follow-up partner in multi-messenger programs # A staged approach with self-standing pathfinders | | GRANDProto300 | GRAND10k | GRAND200k | |--------|--|--|--| | | 2021 2025 | | 203X | | | autonomous radio detection of very inclined air-showers | 1st GRAND sub-array | sensitive all-sky detector | | Goals | cosmic rays 10 ^{16.5-18} eV • Galactic/extragalactic transition • muon problem • radio transients | discovery of EeV neutrinos
for optimistic fluxes radio transients (FRBs!) | 1st EeV neutrino detection and/or neutrino astronomy! | | Setup | 300 HorizonAntennas over
200 km² Particle detectors
(a la HAWC/Auger) Qinhai Province, China | • 10,000 radio antennas over
10,000 km²
• in China | 200,000 antennas
over 200,000 km² 20 sub-arrays of 10k antennas on different continents | | Budget | 2 M€
100 antennas already paid
(China) | 13 M € 1500€/unit confident for large contribution from China | 300M€ in total 500€/unit to be divided between participating countries | ### **GRANDProto300** - A 300-antenna pathfinder stage of GRAND; - 200 km² area; - 100 antennas ready to be deployed; - Aims to validate the GRAND as a standalone radio detection array and realize the self-trigger techniques; - A test bench to improve: - Angular, energy and mass composition reconstruction; - Detection of very inclined cosmic rays with energies from 30 PeV to 1 EeV; - Study the galactic to extragalactic transition energy range; - Potential sensitivity for radio transients such as Giant Radio Pulses and Fast Radio Bursts. ## Summary #### GRAND key features: - The largest UHE observatory -> improved statistics with full sky coverage; - Modular design using relatively inexpensive antennas; - Rich Science case; - Test fundamental physics using: - Cosmic rays; - Cosmogenic neutrinos; - Cosmogenic gamma rays; - Multi-messengers; - GRANDProto300 will serve as a path finder - Study the galactic to extragalactic transition; - Will begin operation soon.