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A rapid introduction into the topic

STAR Collaboration, Nature 548, 62 (2017)
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STAR Collaboration, Nature 548, 62 (2017)
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Such few % polarization indicates an extremely
large vorticity w~(9+1)x10*'s7!, far larger than
anything else we observe in Nature.

The closest example is superfluid nanodroplets
with ©w~107s™.
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Theory side

F. Becattini, V. Chandra, L. Del Zanna, E. Grossi, Ann. Phys. 338 (2013) 32
Also: Ren-hong Fang, Long-gang Pang, Qun Wang, Xin-nian Wang, Phys. Rev. C 94 (2016), 024904

Mechanism: spin-vorticity coupling at local thermodynamic equilibrium.

C F ipti od N A \p* :
> r-Frye prescription: — =
ooper-Frye prescriptio p Bp AP oxp (BB £ 1
1
» For the spin 1/2 particles at the particlization surface: (S(x,p)) = S (1— f(z,p))e"? 0,5,
m
where 8" = u" /T is the inverse four-temperature field.
fdz)\pAf(xvp)
1
» Polarization depends on the the thermal vorticity @, = —5 (0.8, — 0uB,)

» polarization is close or equal for particles and antiparticles

» caused not only by velocity, but also temperature gradients 4/21



The scheme to compute hyperon polarization

Most of the calculations of hyperon polarization on the market are constructed as follows:

1. In a hydrodynamic model:

' Hydrodynamic evolution =~ » freeze-out/particlization H formula from above |

2. In a transport model:

Parton/hadron cascade - coarse-graining H formula from above |
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Global (p, integrated) hyperon polarization in hydro models
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IK, F. Becattini,

¢ Eur. Phys. J. C 77,213 (2017)

UrQMD + vHLLE

Y.L. Xie, D.J. Wang, L.P. Csernai,

Phys. Rev. C 95, 031901 (2017)
PICR

Baochi Fu, Kai Xu, Xu-Guang

Huang, Huichao Song

-

Phys. Rev. C 103, 024903 (2021)
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Same collision energy dependence in transport models+coarse graining
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Local hyperon polarization

Calculation: 3D tilted Monte Carlo Glauber initial state + 3D viscous hydro (VHLLE)
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« When integrated over p_, only P¥ component survives

« However, at a given P, and ¢, all 3 components are non-zero
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A closer look at the quadrupole structure

An oversimplified explanation™ of the quadrupole structure (Sergei Voloshin @ QM2017):
Y
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* It does not work quantitatively, since there are time derivatives and temperature gradients involved.
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Fourier expansion for P?

F. Becattini, IK, Phys. Rev. Lett. 120, 012302 (2018)
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P” emerges because of anisotropic transverse expansion, same way as v,
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Puzzle #1: P? signs in a model and in experiment

Hydro model calculation:
Glauber IS + 3D viscous hydro (vHLLE)
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STAR measurement: Phys. Rev. Lett. 123, 132301 (2019)
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Puzzle #2: @ dependence of P’ is wrong

B. Fu, K. Xu, X. Huang, H. Song, Phys. Rev. C 103, 024903 (2021) [2011.03740]
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Early attempts to explain the sign puzzle
W. Florkowski, A. Kumar, R. Ryblewski, A. Mazeliauskas, Phys. Rev. C 100, 054907 (2019)

Polarization ~ standard thermal vorticity

(opposite sign to experiment)
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Trying out different definitions of vorticity

Hong-Zhong Wu, Long-Gang Pang, Xu-Guang Huang, Qun Wang,
Phys. Rev. Research 1, 033058 (2019) + QM2019 proceeding

AMPT IS (includes angular momentum) + 3D viscous hydro (CLVisc)
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Back to theory

In early 2021, it was realized that the local (i.e. at a given pT) polarization is induced not only
by anti-symmetric (thermal vorticity) but also by symmetric (thermal shear) combinations of
velocity/temperature gradients:

F. Becattini, M. Buzzegoli, A. Palermo, arXiv:2103.10917

St(p) = SL(p) + S¢ (p)
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A possibly similar shear-induced polarization effect derived in: Shuai Y. F. Liu, Yi Yin, arXiv:2103.09200
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Numerical results with the new term

1e-3 Ps 1e-2  F. Becattini, M. Buzzegoli, G. Inghirami,
5 , | o IK, A. Palermo, arXiv:2103.14621
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When the old and the new terms are added together ...

PL + PL 1e-3 Pz + P 1e-3
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The new term is not quite strong enough to overturn the vorticity term and change the sign of P~

As such, it doesn’t explain the sign puzzle.
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One more thing: improving the original expansion

In all cases, we start from the density operator in local equilibrium: B, = %

. 1 - .

PLE — Z_ exp [_/ E,u (T'u 61/ — JMC)] Bu(y) = BV(aj) + a)\/Bl/(x)(y T CU)A
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Now, since the hypersurface Zp is an iso-thermal one, T=const,

R 1 1 / .
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IO ZLE [ T N H
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Improving the original expansion (2)

The derivation from the previous slide leads to an updated formula for polarization of spin % hadrons:

~ =
fE > P nF(]- — TLF) [wpa + 2tp?:>\a}

St (p) = — " p
which depends on kinematic vorticity w,, = 5 (Ooup — Optis), which leads to the following result:
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The updated formalism vs. the experimental data

F. Becattini, M. Buzzegoli, G. Inghirami, IK, A. Palermo, arXiv:2103.14621
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A very good agreement for both P! and P* with T, =150 MeV freezeout.
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A parallel idea: s-quark memory
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Because the (new) shear term for polarization has a
stronger mass dependence, there is a significant
difference between the polarizations of original s-
quark and the produced Lambda hyperon.

In the first scenario, namely the “Lambda equilib-
rium”, we shall assume the spin relaxation rate is large
enough so that A hyperons immediately response to the
presence of hydrodynamic gradients once A are formed
through hadronization. In the second scenario, we con-
sider the opposite limit that A “inherits” the spin polar-
ization from its constituent strange quark [53, 54|, and
the resulting spin polarization is frozen ever since the
hadronization. This scenario will be referred to as the
“strange memory”. In reality, A spin polarization should
evolve from the “strange memory” scenario towards that
in the "Lambda equilibrium” scenario. Therefore com-

Baochi Fu, Shuai Y. F. Liu, Longgang Pang, Huichao Song,
Y1 Yin, arXiv:2103.10403
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Conclusions

Non-vanishing polarization of Lambda hyperons in relativistic heavy-ion collisions has been
recently measured by STAR collaboration in the RHIC Beam Energy Scan (BES) program.
The mean, p -averaged polarization component P’ is in consistent agreement with

hydrodynamic and transport models for heavy-ion collisions at RHIC BES energies.
The azimuthal angle dependence of P! and P* polarization components remained a puzzle.

It has been recently found that polarization of hadrons produced from a hot and dense
medium is generated not only by the spin-vorticity coupling but also by the spin-shear one.

The new, spin-thermal shear term, when embedded into 3D viscous hydrodynamic models
(VHLLE and ECHO-QGP), improves the agreement of the azimuthal dependence of P! and P*
with the data, but it does not seem to be strong enough to solve the “sign puzzle” for the P~

Furthermore, exploiting the fact that the freeze-out and hadron production happens at
approximately constant temperature, one can improve the expansion scheme used to derive
the spin-vorticity and spin-shear couplings, which seems to solve the sign puzzle for the P
and considerably improve the azimuthal angle dependence of the P! component.
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