Photon-hadron production and angular correlations in high energy proton-nucleus collisions

Jamal Jalilian-Marian

Baruch College and City University of New York Graduate Center

ISMD2021

dynamics of universal gluonic matter: gluon saturation

$$P_{gg} \sim P_{gq} \sim \frac{1}{x}$$

How does this happen?

How do correlation functions evolve?

Is there a universal fixed point for the evolution?

Are there scaling laws?

QCD at high energy/small x: gluon saturation

a framework for multi-particle production in QCD at small x/low pt

Shadowing/Nuclear modification factor
<u>Azimuthal angular correlations (photon-hadron,...)</u>
Long range rapidity correlations (ridge,...)
Initial conditions for hydro
Thermalization (?)

 $x \leq 0.01$

 $\alpha_s \ln (x_v/x) \sim 1$

Single inclusive pion production in pp at RHIC

collinear factorization

rization CGC

GSV, PLB603 (2004) 173-183

DHJ, NPA765 (2006) 57-70

$$\int_{\mathbf{x_{min}}}^{\mathbf{1}} d\mathbf{x} \, \mathbf{x} \mathbf{G}(\mathbf{x}, \mathbf{Q^2}) \cdot \cdot \cdot \cdot \cdot \longrightarrow \mathbf{x_{min}} \mathbf{G}(\mathbf{x_{min}}, \mathbf{Q^2}) \cdot \cdot \cdot$$

which kinematics are we in?

QCD kinematic phase space

unifying saturation with high pt (large x) physics?

kinematics of saturation: where is saturation applicable? jet physics, high p_t and forward-backward correlations, spin physics, early time e-loss in heavy ion collisions,

Beyond eikonal approximation:

large x partons of target can cause a large-angle deflection of the quark

Quark scattering: beyond small x approximation

large x partons of target can cause a <u>large-angle deflection</u> of the quark

target gluon field

$$\mathcal{A}^{\mu} = \mathbf{S}^{\mu} + \mathbf{A}^{\mu}$$

single scattering from large x gluons of target

$$\mathbf{A}^{\mu} = (\mathcal{A}^{\mu} - \mathbf{S}^{\mu})$$

multiple scatterings from small x gluons of target S^{μ}

JJM, PRD102 (2020) 1, 014008, PRD99 (2019) 1, 014043 soft (eikonal) limit: $i\mathcal{M} \longrightarrow i\mathcal{M}_{eik}$

$$i\mathcal{M} \longrightarrow i\mathcal{M}_{eik}$$

use spinor helicity formalism: helicity amplitudes

Including large x gluons of the target leads to:

<u>longitudinal double spin asymmetries</u> (ALL)

<u>baryon transport</u> (beam rapidity loss),

one-loop corrections: factorized cross section at all x/p_{+}

gluon radiation

related problem: photon radiation

photon-hadron correlations:

azimuthal angular correlations from low to high pt forward-backward rapidity correlations

photon radiation: helicity amplitudes

$$\mathcal{N}_{1-1} = \bar{u}(\bar{q}) \frac{\sqrt{n} \, \bar{k}_1}{2\bar{n} \cdot \bar{q}} \mathcal{A}(x) \frac{k_3 \, n \, k_2 \not \in (l) \, k_1 \, n}{2n \cdot p \, 2n \cdot (p-l) \, 2n \cdot (p-l)} \, u(p)$$

$$\mathcal{N}_{1-2} = \bar{u}(\bar{q}) \frac{\sqrt{n} \, \bar{k}_1}{2\bar{n} \cdot \bar{q}} \mathcal{A}(x) \frac{n \not \in (l) \, k_1 \, n}{2n \cdot p \, 2n \cdot (p-l)} \, u(p)$$

$$\mathcal{N}_{1-1}^{++} = (\mathcal{N}_{1-1}^{--})^* = -\sqrt{\frac{n \cdot p}{n \cdot (p-l)}} \frac{\left[n \cdot l \, k_{2\perp} \cdot \epsilon_{\perp}^* - n \cdot (p-l) \, l_{\perp} \cdot \epsilon_{\perp}^*\right]}{n \cdot l \, n \cdot (p-l)} \langle \bar{k}_1^+ | \mathcal{A}(x) | k_3^+ \rangle
\mathcal{N}_{1-2}^{++} = (\mathcal{N}_{1-2}^{--})^* = -\sqrt{\frac{n \cdot p}{n \cdot (p-l)}} \langle \bar{k}_1^+ | \mathcal{A}(x) | n^+ \rangle
\mathcal{N}_{1-1}^{+-} = (\mathcal{N}_{1-1}^{-+})^* = -\sqrt{\frac{n \cdot p}{n \cdot (p-l)}} \frac{\left[n \cdot p \, l_{\perp} \cdot \epsilon_{\perp} - n \cdot l \, k_{1\perp} \cdot \epsilon_{\perp}\right]}{n \cdot p \, n \cdot l} \langle \bar{k}_1^+ | \mathcal{A}(x) | k_3^+ \rangle
\mathcal{N}_{1-2}^{+-} = \mathcal{N}_{1-2}^{-+} = 0$$

Sofar

Classical CGC is generalized by including large angle scattering from the target

beam rapidity loss

Helicity amplitudes for quark and photon production are evaluated spin asymmetries

Relevant operators are identified

products of Wilson lines and large x gluon field computing expectation values?

Need to classify/regulate the divergences

Toward a factorized cross section at all x gluon radiation

Combining with small x

sharp boundary (x = 0.01)? matching field strengths?

SUMMARY

CGC is a systematic approach to high energy collisions

strong hints from RHIC, LHC,...

toward precision: NLO, sub-eikonal corrections, ...

CGC breaks down at large x (high p_t)

a significant part of EIC/RHIC/LHC phase space is at large x transition from large x physics to CGC (kinematics?)

Toward inclusion of large x physics:

spin asymmetries

beam rapidity loss

particle production in both small and large p_t kinematics
two-particle correlations: from forward-forward to forward-backward
one-loop correction: both collinear and CGC factorization limits
need to clarify/understand: gauge invariance, initial conditions,

CGC: eikonal approximation (tree level)

$$i\mathcal{M}(p,q) = 2\pi\delta(p^+ - q^+)\bar{u}(q) \not h \int d^2x_t \, e^{-i(q_t - p_t) \cdot x_t} \left[V(x_t) - 1 \right] u(p)$$
 scattering from small x glassical energy with
$$V(x_t) \equiv \hat{P} \exp \left\{ ig \int_{-\infty}^{+\infty} dx^+ S_a^-(x^+, x_t) t_a \right\}$$
 can cause only a small of the standard energy and the standa

scattering from small x gluons of the target can cause only a *small angle deflection*

Dipole: DIS, proton-nucleus collisions

x dependence from JIMWLK/BK evolution equation

$< Tr V(x_{\perp}) V^{\dagger}(y_{\perp}) >$

toward precision at small x:

NLO corrections:

Chirilli+Xiao+Yuan, PRL (2012)

Balitsky+Chirilli, PRD88 (2013)

sub-eikonal corrections:

Kovchegov+Pitonyak+Sievert, JHEP (2017)

Agostini+Altinoluk+Armesto, EPJC (2019)

Aschenauer et al. ArXiv:1708.01527

pQCD: the standard paradigm

$$\mathbf{E} \, rac{\mathbf{d} \sigma}{\mathbf{d^3 p}} \sim \mathbf{f_1}(\mathbf{x}, \mathbf{p_t^2}) \, \otimes \mathbf{f_2}(\mathbf{x}, \mathbf{p_t^2}) \otimes rac{\mathbf{d} \sigma}{\mathbf{dt}} \otimes \mathbf{D}(\mathbf{z}, \mathbf{p_t^2}) + \cdots \cdots$$

bulk of QCD phenomena happens at low pt (small x)

