Analysis preservation in the heavy-ion world

Przemek Karczmarczyk for the ALICE Collaboration

STAR BRAHMS PH#ENIX

przemyslaw.karczmarczyk@cern.ch

RHIC

ISMD2021, 14.07.2021

Overview

- On the importance of analysis preservation
 - Why, what, and how?
- Preservation tools
 - Rivet: analysis algorithm preservation tool
 - HepMC: common MC generator interface
 - Other tools
- 3 Heavy-ions & its obstacles
 - Tools for heavy-ions
 - Difficulties ahead
- 4 ALICE preservation perspective
- 5 Activities at ALICE & RHIC
- 6 Summary

Why preservation is essential?

- Preservation in particle physics experiments is essential:
 - so that most of the scientific knowledge obtained can be conserved
 - ▶ so that the investments in high-energy physics experiments are not lost
 - ▶ for future generations of scientists to keep, reuse, and build upon
- Provides many benefits:
 - ► Perform old analysis on new MC data
 - ► Post-publication reproducibility of the MC results for resolving conflicts between published data/MC comparisons

Who can benefit from that?

Experimental collaborations:

- Facilitate cooperation between physicists and teams within a given collaboration
- ► Simplify the knowledge transfer between scientists
- ▶ Provide a way to re-perform analysis of the old MC data

HEP community:

- ► Apply new theoretical models to the older analysis
- ► Resolve conflicts between published results

Outside HEP community:

- ► Provide a way for young students to get acquainted with scientific work by performing a sample analysis
- ► Enable the engagement of external communities

4 / 24

What do we want to preserve?

- All the necessary components needed for reusing an analysis and/or dataset to go from MC to the analysis result, such as:
 - ▶ MC analysis software
 - ▶ documentation
 - processed data
- This will provide all the benefits of preservation we need on the MC front
- For the preservation of experimental data with accompanying software and documentation see OpenData project: http://opendata.cern.ch/

How do we want to do that?

■ How to make preservation possible?

- 1 Develop tools that can be used for the analysis preservation
- 2 Make these tools universal so that anyone within the HEP community can use them for their analysis
- Implement policies among collaborations allowing/enforcing them to follow the rules on what components to preserve and how to do that

6 / 24

How do we want to do that?

■ How to make preservation possible?

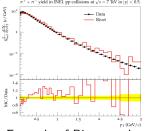
- 1 Develop tools that can be used for the analysis preservation
- 2 Make these tools universal so that anyone within the HEP community can use them for their analysis
- 3 Implement policies among collaborations allowing/enforcing them to follow the rules on what components to preserve and how to do that

Preservation tools

■ What do we need:

- ▶ A tool that will enable to store scientific results in a central repository
 - Solution: HepData
- ► A tool that allows to store MC analysis algorithms in a place accessible to anyone
 - Solution: Rivet
- ▶ A tool that will serve as an interface between generator and analysis
 - Solution: HepMC
- ▶ Other tools that can assist with analysis preservation effort
 - OpenData and other tools

8 / 24


Rivet

■ Rivet: Robust Independent Validation of Experiment and Theory

- ► Generator-independent analysis framework, arXiv:1003.0694
- System for validation and tuning of event generators
- ▶ Data & analysis algorithms preservation

■ Rivet features:

- ▶ Read input from HepMC format (file, FIFO, or direct in memory)
- ▶ Provides a large set of experimental analyses currently O(1000)
- Run one (or more) analyses on the input data from generator
- ► Fast and direct comparison between exp. data and generators

Key	ALICE	ATLAS	CMS	LHCb	Forward	HERA	e*e* (≥ 12 GeV)	e*e" (≤ 12 GeV)	Tevatron	RHIC	SPS	Other
Rivet wanted (total):	259	320	427	246	16	503	715	536	1131	454	62	1
Rivet REALLY wanted:	36	42	83	8	0	13	1	0	5	1	0	0
Rivet provided:	26/285 = 9%	175/495 = 35%	91/518 = 18%	16/262 = 6%	8/24 = 33%	9/512 = 2%	180/895 = 20%	305/841 = 36%	58/1189 = 5%	8/462 = 2%	4/66 = 6%	112/113 = 99%

Analysis coverage, source: https://rivet.hepforge.org/rivet-coverage

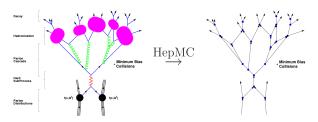
Example of Rivet results

P. Karczmarczyk

Rivet for heavy-ions

14.07.2021

Rivet analysis


- Analyses as C++ classes
- To be written by users (analysers)
- Unique analysis identifier
 - ► Consist of experiment name, year of publication, and Inspire ID code
 - ► e.g. ALICE_2015_I1357424
- 3 core methods:
 - ▶ init(): histogram booking, variables initialization...
 - analyze(...): main event loop, events are analysed and histograms are filled here
 - ▶ finalize(): histogram scaling, divisions for the final data comparison

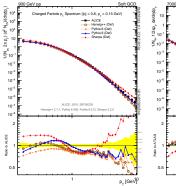
P. Karczmarczyk

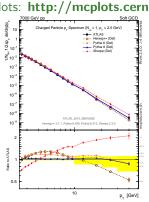
HepMC

■ HepMC:

- ► Standarized event record library for High Energy Physics Monte Carlo generators and simulation, arXiv:1912.08005
- ► A direct output of most modern generators
- ▶ File format contains information about final state particles
- ▶ Why? We need an interface between generator and analysis

Recent workshop:


- ► HEPMC in Heavy Ion Collisions (7 June 2021)
- ► https://indico.bnl.gov/event/10966/



P. Karczmarczyk Rivet for heavy-ions 14.07.2021 11/24

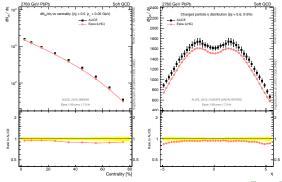
MCPLOTS website

- MCPLOTS: a particle physics resource based on volunteer computing, arXiv:1306.3436
 - ► Enable anyone to quickly get an idea of how well a particular model/tune describes various data sets
 - ► Automatize Rivet creation of comparison plots
 - ► Online repository of plots: http://mcplots.cern.ch

How do we want to do that?

■ How to make preservation possible?

- 1 Develop tools that can be used for the analysis preservation
- 2 Make these tools universal so that anyone within the HEP community can use them for their analysis
- 3 Implement policies among collaborations allowing/enforcing them to follow the rules on what components to preserve and how to do that


Rivet for heavy-ions

- Rivet originally developed for $pp/p\bar{p}$ and e^+e^- physics
- But in recent years this has changed
 - ► More interest from the heavy-ion community
 - ▶ Possibility to use Rivet as a tool for HI analyses
- Most common HI features already covered in Rivet 2.7+
 - ► see arXiv:1912.05451, arXiv:2001.10737
- Rivet released with:
 - ► Centrality calibration & selection using analysis options
 - ► Comparing and merging Rivet runs using reentrant finalize (e.g. for AA/pp ratio)
 - ► Flow observables, event mixing framework
 - ► A set of 20+ analyses using heavy-ion features

4D > 4P > 4E > 4E > E 990

MCPLOTS for heavy-ions

- Originally provided results for pp and ee, but not for heavy-ions
- New **heavy-ion version** of MCPLOTS
 - ▶ Uses new Rivet version as a baseline
 - ► Enables to run analyses that use heavy-ion features described
- Integration ongoing
 - ► Preview version available here: http://mcplots-alice.cern.ch

Obstacles in heavy-ion analyses

- MC event production in pp:
 - ▶ low CPU time, low storage consumption
 - ► can easily run with FIFO logic
- MC event production in AA:
 - ▶ large CPU time, huge storage consumption (compared to pp)
 - ▶ difficult to run with FIFO logic

Event type	MC generator	CPU time / event	Storage / HepMC event
pp, 5.02 TeV, min. bias	Pythia 8 Monash Tune	≈ 20 ms	≈ 50 kB
Pb-Pb, 5.02 TeV, min. bias	Pythia 8 Monash Tune	≈ 1 s	\approx 5 MB

- Not all heavy-ion features available yet when using tools like Rivet
 - ▶ limited background subtraction
 - ▶ fits (e.g. for extracting femtoscopic radii)

→ロト→日ト→ミト→ミ りへで

How do we want to do that?

■ How to make preservation possible?

- 1 Develop tools that can be used for the analysis preservation
- 2 Make these tools universal so that anyone within the HEP community can use them for their analysis
- Implement policies among collaborations allowing/enforcing them to follow the rules on what components to preserve and how to do that

ALICE policy

HepData submission policy

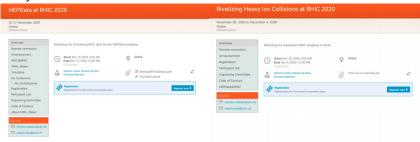
- ▶ No HepData available at the 'ALICE preliminary' level
- ► HepData tarball (yaml) prepared for the ArXiv submission
- ▶ Remains ALICE internal until publication in the journal
- ▶ HepData tarball pushed to website once published by the journal

2 Analysis rivetization

- Current goal: after publication (once HEPdata is publicly available)
 - Many older analyses are still waiting to be rivetized
- ► Encouraged: during paper preparation
 - User can benefit from the comparison to models

ALICE preservation effort

- The work was constrained to pp analyses due to limited support for heavy-ions until recently
- People in ALICE are working on rivetizing their analyses, including AA analyses
 - ► The trend is growing
 - ► A dedicated group with the objective of coordinating the analysis rivetization within the experiment
- ALICE developments
 - ▶ What we publish is reproduceable
 - ► Code is publicly available


Key	ALICE	ATLAS	CMS	LHCb	Forward	HERA	e ⁺ e⁻ (≥ 12 GeV)	e ⁺ e⁻ (≤ 12 GeV)	Tevatron	RHIC	SPS	Other
Rivet provided:	12 /197 = 6%	2/52 = 4%	0/79 = 0%	0/7 = 0%	0/1 = 0%	0/1 = 0%	0	0	0	3/303 = 1%	0	1/1 = 100%

HI analysis coverage, source:

https://rivet.hepforge.org/rivet-coverage-heavyiononly

Rivetization at RHIC

- Similar approach:
 - ► Use Rivet + HepMC
- Various challenges:
 - ► Missing features in Rivet
 - ▶ Data not in HepData
- Many activities:

Activities at RHIC

- How to get the work done, especially when people that measured something are long gone?
- Solution: Course-based Undergraduate Research experience
- Total number of involved students (up to now):
 - ▶ 28 students
 - ▶ 12 women
 - ▶ 9 minorities
 - ▶ 4 non-traditional

Poster session

"Rivet for heavy ions at RHIC: theory comparison and education" Antonio Carlos Oliveira Da Silva (University of Tennessee - Knoxville) & Christine Nattrass (University of Tennessee (US))

Summary

- Preservation is essential
- The tools are there and their integration with the heavy-ion features is ongoing
 - ► First frameworks are there
 - ▶ More heavy-ion integration is expected
- Analysis preservation activities are visible within ALICE and RHIC
- Heavy-ion communities are working on implementing and standarizing their policies
- ALICE and RHIC are (and will be) pushing towards preservation of their analyses

References

- Rivet webpage: https://rivet.hepforge.org/
- Rivet user manual: arXiv:1003.0694
- Rivet version 3: arXiv:1912.05451
- Rivet for heavy-ions: arXiv:2001.10737
- MCPLOTS webpage: http://mcplots.cern.ch/
- MCPLOTS HI development webpage: http://mcplots-alice.cern.ch/

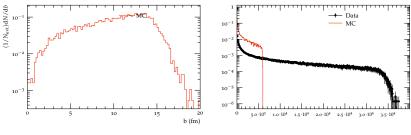
Thank you!

Backup

More about Rivet

Rivet features

- ► Provides a large set of experimental analyses (currently over 400...) useful for MC generator development, validation, and tuning
- ► Analyses correspond to the actual paper results
- ► Analysis algorithms in object-oriented C++
- ightharpoonup Analysis code separated ightharpoonup easy way to add a new one
- ▶ Using the HepMC event format → independent of MC generators
- ► Plotting based on YODA framework

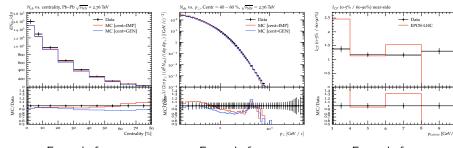

Centrality framework in Rivet

- Centrality framework: allows an analysis to cut on percentiles of single event quantities preloaded to that analysis
- Consist of:
 - ► A set of calibration analyses
 - ▶ Preloading calibration files as an input to the next run
 - ▶ Options for centrality to select the type of calibration to use
 - ► Centrality projection that allows to access centrality value
- Analysis options allow selection of centrality calibration method
 - 1 Calibration histogram from reference data
 - 2 Generated calibration histogram
 - 3 Impact parameter calibration histogram
 - 4 User-defined calibration histogram
 - 5 Generated centrality (available only with HepMC3)

Centrality calibration

- Calibration analysis used to produce calibration files
- Example analysis: ALICE_2015_PBPBCentrality

Impact parameter distribution


V0M multiplicity distribution

■ New *preload* flag to preload histograms to the Rivet runs

Centrality selection with analysis options

Analysis options

- ▶ Possible to select by user at runtime
- Analysis can be run with different options
- Centrality value accessible inside an analysis

Example from ALICE_2010_I880049

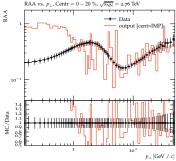
Example from ALICE_2012_I1127497

Example from ALICE_2012_I930312

+ Data

EPOS-LHC

prosec [GeV/c]


Reentrant finalize

■ Postprocessing implemented in a form of 'reentrant finalize' method

- ➤ Analyses produce 'RAW' histograms saved in the output file before calling finalize() method
- ▶ rivet-merge to call finalize() again, but this time with preloaded files from previous runs to get final plots
- ▶ 'Reentrant' flag to mark analyses using reentrant finalize method

Nuclear modification factor
$$R_{\rm AA} = \frac{{\rm d}N_{\rm AA}/{\rm d}\rho_{\rm T}}{< N_{\rm coll}>{\rm d}N_{\rm pp}/{\rm d}\rho_{\rm T}}$$

ALICE_2012_I1127497 example

HI analyses list

With data:

- ALICE_2010_I880049 (PbPb): Multiplicity
- ALICE_2012_I930312 (PbPb): IA A
- ALICE_2012_I1127497 (PbPb): R A A
- ALICE_2012_I1126966 (PbPb): π . K. p spectra
- ALICE_2013_I1225979 (PbPb): Charged multiplicity
- ALICE_2014_I1243865 (PbPb): Multi-strange baryons
- ALICE_2014_I1244523 (pPb): Multi-strange baryons
- ALICE_2015_PBPBCentrality (PbPb): Calibration
- ALICE_2016_I1394676 (PbPb): Charged multiplicity
- ALICE_2016_I1419244 (PbPb): Multiparticle correlations (flow)
- ALICE_2016_I1471838 (pp): Multi-strange baryons
- ALICE_2016_I1507090 (PbPb): Charged multiplicity
- ALICE_2016_I1507157 (pp): Angular correlations
- ATLAS_2015_I1360290 (PbPb): Charged multiplicity
- ATLAS_2015_I1386475 (pPb): Charged multiplicity + spectra
- ATLAS_PBPB_CENTRALITY (PbPb): Calibration
- ATLAS_pPb_Calib (pPb): Calibration
- BRAHMS_2004_I647076 (AuAu): π , K, p spectra as function of

Without data:

- ALICE_2015_PPCentrality: Calibration
- BRAHMS_2004_CENTRALITY: Calibration
- STAR_BES_CALIB: Calibration
- MC_Cent_pPb_Calib: Calibration example
- MC_Cent_pPb_Eta: Calibration example
- MC_OPTIONS: Analysis options example
- MC_REENTRANT: Reentrant finalize example

See list of all analyses here

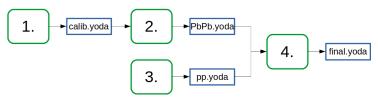
31 / 24

HI analysis chain

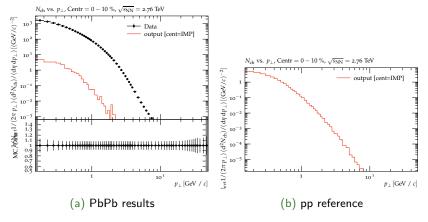
Calibration run:

rivet -a ALICE_Calibration /path/to/PbPb.hepmc

2 Run with preloaded calibration file for PbPb beam:


rivet -p /path/to/calib.yoda -a ALICE_2012_I123456:cent=IMP /path/to/PbPb.hep

3 Regular run for pp beam:


rivet -a ALICE_2012_I123456:cent=IMP /path/to/pp.hepmc

4 Postprocessing with reentrant finalize:

rivet-merge PbPb.yoda pp.yoda -o final.yoda

R_{AA} analysis

- Impact parameter distribution used for calibration
- No HepMC data for pp reference
- lacktriangledown JEWEL does not provide $N_{
 m coll}$ that's why the difference between MC and experimental data

R_{AA} analysis

Nuclear modification factor

$$R_{\mathrm{AA}} = rac{\mathrm{d}N_{\mathrm{AA}}/\mathrm{d}p_{\mathrm{T}}}{< N_{\mathrm{coll}} > \mathrm{d}N_{\mathrm{pp}}/\mathrm{d}p_{\mathrm{T}}}$$

 $\langle N_{\rm coll} \rangle$ - average number of nucleon-nucleon collisions in a HI collision ${
m d}N_{\rm AA}/{
m d}p_{\rm T}$ - transverse momentum distribution in HI collision ${
m d}N_{\rm DD}/{
m d}p_{\rm T}$ - transverse momentum distribution in pp collision

- \blacksquare R_{AA} tells how heavy-ion events looks like in scale of pp collisions
- \blacksquare Both pp and heavy-ion collisions are required to calculate $R_{\rm AA}$

YODA

- YODA (Yet more Objects for Data Analysis):
 - ► A histogramming toolkit developed as a lightweight common system for MC event generator validation analyses
 - ► The core histogramming system in Rivet

YODA logo