Matching event generators and N3LO QCD calculations

 based on arXiv:2106.03206ISMD 2021, July 12, 2021
Stefan Prestel (Lund)

Why precision QCD?

more data ,better theory \rightarrow inconclusive analyses
more data, better theory \rightarrow conclusive i.e. better analyses

arXiv:1904.08960

arXiv:1803.09973

We don't want to be left with inconclusive measurements!

Scattering events

"Events" allow to disentangle calculation and analysis ...but are naively not IR-safe For "safe" events from higher-order calculations, matching (to shower) required. This even offers physical final states:

Matching record so far: NNLO+PS

NNLO+PS achieved for $p p \rightarrow$ singlet(s): Precision for fiducial "standard candles". Impressive exceptions beyond singlet production:

DIS NNLO+PS (arXiv:1809.04192):
Has "hard" light jet in final state, and complex relation between "natural scale" and available phase space. Available in Sherpa.

$t \bar{t}$ NNLO+PS (arXiv: 2012.14267):
First $p p$ collider process with colored final state @ NNLO+PS. Employs recent MINNLO ${ }_{P S}$ scheme of Powheg-Box

The goals of N3LO+PS matching

Why are V+j@NNLO+PS and H+j@NNLO+PS (etc) not available?

Strong $p_{\perp j}$ cut dependence problematic? Calculation w/o cut \subset N3LO

N3LO+PS matching!

- 3rd-order precision for inclusive observables
- 2nd-order precision for one-jet observables, resummation when the jet becomes unresolved
- 1st-order precision for two-jet observables, resumm. when jet turns unresolved individually
- Oth-order precision for three-jet observables, resumm. when jet turns unresolved individually - PS resummation of any observable sensitive
 to unresolved partons should not be impaired

$\underline{\mathrm{N} 3 \mathrm{LO}+\mathrm{PS}: \text { Basic idea }}$

 arXiv:2106.03206 introduced a viable N3LO+PS matching scheme:The ThirdOrderMatched TransitionEvents $=$ TOMTE method

Basic idea:
N^{3} LO exclusive zero-jet x-section \oplus NNLO+PS matched 1-jet x-section
massage
$\mathrm{N}^{3} \mathrm{LO}+\mathrm{PS}$ matching

Run down:

- Regularize 1-jet x-section with Sudakovs, so that the hardest jet may turn unresolved
- Remove unwanted NNLO terms
- Unitarize and complement (i.e. subtract projected one-jet bin from zero-jet bin)
- Include N³ LO jet-vetoed zero-jet cross section

A word on "shower accuracy"

Preserving the "shower accuracy":
If the fixed-order calculations were to employ the shower (=soft/collinear) approximation, then the result of the matched calculation has to be indistinguishable from the PS prediction.
\rightarrow Application of Sudakovs needs to take into account that PS all-order factors are mixtures of different "production histories".

PS splits inclusive calculations into exclusive components. Inclusive rates are preserved by demanding [no-emission factor $] \mathcal{O}_{n}=\left(1-\int[\right.$ emission rate $\left.]\right) \mathcal{O}_{n}$
\rightarrow Exclusive n-jet rate also depends on an admixture of histories.

A problem with unitarization and "shower bias"

- Matching improves emission rate $d \sigma_{n+1}$ beyond shower approximation
- Inclusive n-jet rate broken, unless no-emission-rate for n-jet state $=1-\int d \Phi_{1} d \sigma_{n+1}$
- The phase-space dependent admixture of emission histories has to apply to subtraction $\int d \Phi_{1} d \sigma_{n+1}$. Otherwise inclusive n-jet rate broken
- PS admixture deforms n-jet distributions due to phase-space dependence of PS history mixing weight \rightarrow exclusive n-jet rate broken \rightarrow Need to introduce bias correction

Final N3LO+PS formula

\hookrightarrow more details
\hookrightarrow details on 3 jets \hookrightarrow details on 1 jets
\hookrightarrow details on 2 jets \hookrightarrow details on 0 jets

Carefully matching terms (by reweighting/expanding), we find the TOMTE formula

$$
\begin{aligned}
& \mathcal{F}_{n}^{(\infty)}{ }^{(\text {TOMTE }]}\left(\Phi_{n}, t_{+}, t_{-}\right) \\
& :=\mathrm{O}_{n}\left\{d \sigma_{n}^{(0+1+2+3) \mid \mathrm{EXC]}}\left(\Phi_{n}\right)\right. \\
& +\oint_{t^{-}}^{t^{+}} d \sigma_{n+1}^{(0)}\left(\Phi_{n+1}\right)\left[\mathbb{1}_{n}^{n+1}-\mathrm{w}_{n+1}\left(\Phi_{n+1}\right)\left(1-\left.\mathrm{w}_{n+1}\left(\Phi_{n+1}\right)\right|_{O\left(\alpha_{a}^{2}\right)}\right)\right] \\
& +\oint_{t^{-}}^{t^{+}} d \sigma_{n+1}^{(1)(\mathrm{EXO})}\left(\Phi_{n+1}\right)\left[\mathbf{1}_{n}^{n+1}-\mathrm{W}_{n+1}\left(\Phi_{n+1}\right)\left(1-\left.\mathrm{w}_{n+1}\left(\Phi_{n+1}\right)\right|_{O\left(\alpha_{s}^{1}\right)}\right)\right]+\oint_{t^{-}}^{t^{+}} d \sigma_{n+1}^{(2)[\mathrm{EXC]}}\left(\Phi_{n+1}\right)\left[\mathbb{1}_{n}^{n+1}-\square \mathrm{w}_{n+1}\left(\Phi_{n+1}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& +d \sigma_{n+1}^{(1)[\operatorname{EXC}]}\left(\Phi_{n+1}\right) \mathrm{W}_{n+1}\left(\Phi_{n+1}\right)\left[1-\left.\mathrm{W}_{n+1}\left(\Phi_{n+1}\right)\right|_{O\left(\alpha_{o}^{1}\right)}\right]+d \sigma_{n+1}^{(2)[\operatorname{EXC}]}\left(\Phi_{n+1}\right) \mathrm{W}_{n+1}\left(\Phi_{n+1}\right) \\
& +\oint_{t^{-}}^{t^{+}} d \sigma_{n+2}^{(0)}\left(\Phi_{n+2}\right)\left[W_{n+1}\left(\Phi_{n+2}\right)\left(1-\left.W_{n+1}\left(\Phi_{n+2}\right)\right|_{O\left(\alpha_{\varepsilon}^{1}\right)}\right) \mathbb{I}_{n+1}^{n+2} \mid-w_{n+2}\left(\Phi_{n+2}\right)\left(1-\left.W_{n+2}\left(\Phi_{n+2}\right)\right|_{\mathcal{O}\left(\alpha_{\sigma}^{1}\right)}\right)\right] \\
& \left.+\oint_{t^{-}}^{t^{+}} d \sigma_{n+2}^{(1)[\mathrm{EXC]}}\left(\Phi_{n+2}\right)\left[\mathrm{w}_{n+1}\left(\Phi_{n+2}\right) \mathbb{1}_{n+1}^{n+2} \mid-\mathrm{w}_{n+2}\left(\Phi_{n+2}\right)\right]+\oiint_{t^{-}}^{t^{+}} d \sigma_{n+3}^{(0)}\left(\Phi_{n+3}\right)\left[\mathbf{w}_{n+1}\left(\Phi_{n+3}\right) \mathbb{1}_{n+1}^{n+3}-W_{n+2}\left(\Phi_{n+3}\right) \mathbb{1}_{n+2}^{n+3}\right]\right\} \\
& +\mathrm{O}_{n+2}\left\{d \sigma_{n+2}^{(0)}\left(\Phi_{n+2}\right) \underline{\mathrm{W}_{n+2}\left(\Phi_{n+2}\right)\left[1-\left.\mathrm{W}_{n+2}\left(\Phi_{n+2}\right)\right|_{O_{\left(\alpha_{s}^{1}\right)}}\right]}+d \sigma_{n+2}^{(1)\left[\mathrm{EXC}^{2}\right.}\left(\Phi_{n+2}\right) \mathrm{W}_{n+2}\left(\Phi_{n+2}\right)\right] \\
& \left.+\oint_{t^{-}}^{t^{+}} d \sigma_{n+3}^{(0)}\left(\Phi_{n+3}\right)\left[\overline{W_{n+2}\left(\Phi_{n+3}\right) \mathbb{1}_{n+2}^{n+3}}-\overline{W_{n+3}\left(\Phi_{n+3}\right)}\right]\right\}+d \sigma_{n+3}^{(0)}\left(\Phi_{n+3}\right) \overline{W_{n+3}\left(\Phi_{n+3}\right)} \mathcal{F}_{n+3}^{(\infty)}\left(\Phi_{n+3}, t_{n+3}, t_{-}\right) .
\end{aligned}
$$

Lengthy, but in principle straight-forward to implement.

Closure test

Construct toy N3LO calculation ($e^{+} e^{-} \rightarrow 2$ jets) for closure testing:

- Approximate logarithmic virtual/real corr ${ }^{s}$ by clustered n^{k} LO events (\sim LoopSim)
- Add (arbitrary) finite x-section changes by scaling LO events with α_{s}-polynomial
- Define result as " n^{k+1} LO calculation" and reiterate

Differential $4 \rightarrow 5$ jet resolution (Durham algorithm)

Comparison [Toy Fixed-Order] \leftrightarrow [TOMTE]: Five and four jet obs ${ }^{s}$ correctly handled: TFO result recovered at large jet separation, PS resummation when jets turn unresolved

Closure test

Construct toy N3LO calculation ($e^{+} e^{-} \rightarrow 2$ jets) for closure testing:

- Approximate logarithmic virtual/real corr ${ }^{s}$ by clustered n^{k} LO events (\sim LoopSim)
- Add (arbitrary) finite x-section changes by scaling LO events with α_{s}-polynomial
- Define result as " n^{k+1} LO calculation" and reiterate

Comparison [Toy Fixed-Order] \leftrightarrow [TOMTE]: Three and two jet obs ${ }^{s}$ correctly handled: TFO result recovered at large jet separation, PS resummation when jet turn unresolved

Looking ahead

Precision event generators are crucial when searching for physics beyond the SM - or simply beyond collinear factorization.

N3LO+PS is possible.
arXiv:2106.03206 introduced the TOMTE scheme, and performed closure tests for $e^{+} e^{-} \rightarrow 2$ jets

This may only be a beginning. Next steps could be

- extend implementation to hadron collisions: no in-principle bottlenecks, but some efficient expansions of PDF evolution required
- work together with developers of real N3LO calculations to produce real N3LO event generators

Feedback very welcome!

Backup

A more detailed version of the Tomte matching formula is

```
F}\mp@subsup{\mathcal{F}}{n}{(\infty)[Tomit]]}(\mp@subsup{\Phi}{n}{},\mp@subsup{t}{+}{\prime,},\mp@subsup{t}{-}{}
= On {d\mp@subsup{\sigma}{n}{(0+1+2+3)[EXC] ($\mp@subsup{\Phi}{n}{})}
+ {
+ {\mp@code{t}
+ {- d| drn+1
+ #
+ &f
```



```
+O}\mp@subsup{O}{n+1}{}{d\mp@subsup{\sigma}{n+1}{(2)[\mp@subsup{Q}{n+2}{}<\mp@subsup{Q}{c}{}\wedge}\mp@subsup{Q}{n+3}{}<\mp@subsup{Q}{c}{}\mp@subsup{]}{(\mp@subsup{\Phi}{n+1}{})}{}\mp@subsup{\Delta}{n(t+,\mp@subsup{t}{n+1}{})\mp@subsup{w}{n+1}{(\infty)}(\mp@subsup{\Phi}{n+1}{()}}{
\mp@subsup{\Delta}{n}{\prime}(t+,'tn+1})\mp@subsup{w}{n+1}{(\infty)}(\mp@subsup{\Phi}{n+1}{\prime}
    -(1-\mp@subsup{w}{n+1}{(1)}(\mp@subsup{\Phi}{n+1}{})-\mp@subsup{w}{n+1}{(2)}(\mp@subsup{\Psi}{n+1}{})-\mp@subsup{\Delta}{n}{(1)}(\mp@subsup{t}{+}{\prime},\mp@subsup{t}{n+1}{})-\mp@subsup{\Delta}{n}{(2)}(\mp@subsup{t}{+}{\prime},\mp@subsup{t}{n+1}{})
    +[[\mp@subsup{\Delta}{n}{(1)}(\pm+,\mp@subsup{t}{n+1}{})\mp@subsup{]}{}{2}+[\mp@subsup{w}{n+1}{(1)}(\mp@subsup{\Phi}{n+1}{})\mp@subsup{]}{}{2}+\mp@subsup{w}{n+1}{(1)}(\mp@subsup{\Phi}{n+1}{})\mp@subsup{\Delta}{n}{(1)}(t+,\mp@subsup{t}{n+1}{}))
+d\sigma|)
```

```
+ }\mp@subsup{|}{\mp@subsup{t}{}{-}}{t+}d\mp@subsup{\sigma}{n+2}{(0)}[\mp@subsup{Q}{n+2}{}>\mp@subsup{Q}{C}{}]\mp@subsup{]}{(\mp@subsup{\Phi}{n+2}{})}{
```



```
    8 [(1-\mp@subsup{w}{n+1}{(1)}(\mp@subsup{\Phi}{n+1}{})-\mp@subsup{\Delta}{n}{(1)}(\mp@subsup{t}{+}{\prime},\mp@subsup{t}{n+1}{}))\mp@subsup{)}{n+1}{n+2}
    - - *n+1
    \otimes (1-\mp@subsup{w}{n+1}{(1)}(\mp@subsup{\Psi}{n+1}{})-\mp@subsup{w}{n+2}{(1)}(\mp@subsup{\Psi}{n+2}{2})-\mp@subsup{\Delta}{n}{(1)}(\textrm{t}+\cdot\mp@subsup{t}{n+1}{})-\mp@subsup{\Delta}{n+1}{(1)}(\mp@subsup{t}{n+1}{},\mp@subsup{t}{n+2}{}))]}
+ }\mp@subsup{\int}{\mp@subsup{t}{}{-}}{t+}d\mp@subsup{\sigma}{n+2}{(1)}[\mp@subsup{Q}{n+2}{}>\mp@subsup{Q}{c}{}\wedge\mp@subsup{Q}{n+3}{}<\mp@subsup{Q}{c}{}\mp@subsup{]}{(\mp@subsup{\Phi}{n+2}{})}{
```



```
    - }\mp@subsup{\Delta}{n}{(t+, t\mp@subsup{t}{n+1}{})\mp@subsup{\Delta}{n+1}{(t\mp@subsup{t}{n+1}{},\mp@subsup{t}{n+2}{})\mp@subsup{w}{n+1}{(\infty)}(\mp@subsup{\Psi}{n+1}{})\mp@subsup{w}{n+2}{(\infty)}(\mp@subsup{\Phi}{n+2}{})}\mathrm{ ]}.
+ #
    * [ }\mp@subsup{\Delta}{n}{}(t+,\mp@subsup{t}{n+1}{})\mp@subsup{w}{n+1}{(\infty)}(\mp@subsup{\phi}{n+1}{})\mp@subsup{1}{n+1}{n+3
```



```
+O}\mp@subsup{O}{n+2}{}{d\mp@subsup{\sigma}{n+2}{(0)}[\mp@subsup{Q}{n+2}{}>\mp@subsup{Q}{c}{}\mp@subsup{]}{{\mp@subsup{\Phi}{n+2}{}}}{
```



```
    @ [1- w
+d\sigma}\mp@subsup{\sigma}{n+2}{(1)}[\mp@subsup{Q}{n+2}{}>\mp@subsup{Q}{c}{}\wedge\mp@subsup{Q}{n+3}{}<\mp@subsup{Q}{c}{}]\mp@subsup{|}{(\mp@subsup{\Phi}{n+2}{\prime2})}{
```



```
+ {
- 都(t+, t
```



```
\otimes F F
```

Note the cuts on the contributions indicated as superscripts, which separate higher-order real contributions into complementary samples.
$d \sigma_{n+3}^{(0)}\left[Q_{n+3}>Q_{c}\right]_{\left(\Phi_{n+3}\right)} \Delta_{n}\left(t_{+}, t_{n+1}\right) \Delta_{n+1}\left(t_{n+1}, t_{n+2}\right) \Delta_{n+2}\left(t_{n+2}, t_{n+3}\right) w_{n+1}\left(\Phi_{n+1}\right) w_{n+2}\left(\Phi_{n+2}\right) w_{n+3}\left(\Phi_{n+3}\right)$
$\otimes \mathcal{F}_{n+2}^{(\infty)}\left(\Phi_{n+3}, t_{n+3}, t_{-}\right)$.

- Reweighting as in CKKW-L merging
- Events regularized by disallowing PS evolution variable below PS cut-off $\sim 0.5 \mathrm{GeV}$
- Events showered to allow producing extra partons

$$
\begin{aligned}
& +O_{n+2}\left\{d \sigma_{n+2}^{(0)\left[Q_{n+2}>Q_{c}\right]_{\left(\Phi_{n+2}\right)}}{ }_{\left(\Phi_{n}\right.}\right. \\
& \otimes \Delta_{n}\left(t_{+}, t_{n+1}\right) \Delta_{n+1}\left(t_{n+1}, t_{n+2}\right) w_{n+1}^{(\infty)}\left(\Phi_{n+1}\right) w_{n+2}^{(\infty)}\left(\Phi_{n+2}\right) \\
& \otimes\left[1-w_{n+1}^{(1)}\left(\Phi_{n+1}\right)-w_{n+2}^{(1)}\left(\Phi_{n+2}\right)-\Delta_{n}^{(1)}\left(t_{+}, t_{n+1}\right)-\Delta_{n+1}^{(1)}\left(t_{n+1}, t_{n+2}\right)\right] \\
& +d \sigma_{n+2}^{(1)}\left[Q_{n+2}>Q_{c} \wedge Q_{n+3}<Q_{c}\right]_{\left(\Phi_{n+2}\right)} \\
& \otimes \Delta_{n}\left(t_{+}, t_{n+1}\right) \Delta_{n+1}\left(t_{n+1}, t_{n+2}\right) w_{n+1}^{(\infty)}\left(\Phi_{n+1}\right) w_{n+2}^{(\infty)}\left(\Phi_{n+2}\right) \\
& +\oint_{t^{-}}^{t^{+}} d \sigma_{n+3}^{(0)\left[Q_{n+3}>Q_{c}\right]}\left(\Phi_{n+3}\right)\left[\Delta_{n\left(t_{+}, t_{n+1}\right) \Delta_{n+1}\left(t_{n+1}, t_{n+2}\right) w_{n+1}^{(\infty)}\left(\Phi_{n+1}\right) w_{n+2}^{(\infty)}\left(\Phi_{n+2}\right) 1_{n+2}^{n+3}}^{n}\right. \\
& \left.\left.-\Delta_{n}\left(t_{+}, t_{n+1}\right) \Delta_{n+1}\left(t_{n+1}, t_{n+2}\right) \Delta_{n+2}\left(t_{n+2}, t_{n+3}\right) w_{n+1}\left(\Phi_{n+1}\right) w_{n+2}\left(\Phi_{n+2}\right) w_{n+3}\left(\Phi_{n+3}\right)\right]\right\} \\
& +d \sigma_{n+3}^{(0)}\left[Q_{n+3}>Q_{c}\right]\left(\Phi_{n+3}\right) \Delta_{n}\left(t_{+}, t_{n+1}\right) \Delta_{n+1}\left(t_{n+1}, t_{n+2}\right) \Delta_{n+2}\left(t_{n+2}, t_{n+3}\right) w_{n+1}\left(\Phi_{n+1}\right) w_{n+2}\left(\Phi_{n+2}\right) w_{n+3}\left(\Phi_{n+3}\right) \\
& \otimes \mathcal{F}_{n+3}^{(\infty)}\left(\Phi_{n+3}, t_{n+3}, t_{-}\right)
\end{aligned}
$$

- Handling ~ UNLOPS-PC merging + properly removing clustering bias
- Events would only need to be showered below PS cut-off \Rightarrow no showering applied (same for one-jet and zero-jet terms)

One-jet observables in TOMTE

\hookrightarrow back to full formula

$$
\begin{aligned}
& +O_{n+1}\left\{d \sigma_{n+1}^{(2)}\left[Q_{n+2}<Q_{c} \wedge Q_{n+3}<Q_{c}\right]_{\left(\Phi_{n+1}\right)} \Delta_{n\left(t_{+}+t_{n+1}\right) w_{n+1}^{(\infty)}\left(\Phi_{n+1}\right)}\right. \\
& +d \sigma_{n+1}^{(0)}\left(\Phi_{n+1}\right) \otimes \begin{array}{l}
\Delta_{n}\left(t_{+}, t_{n+1}\right) w_{n+1}^{(\infty)}\left(\Phi_{n+1}\right) \\
\cdot\left(1-w_{n+1}^{(1)}\left(\Phi_{n+1}\right)-w_{n+1}^{(2)}\left(\Phi_{n+1}\right)-\Delta_{n}^{(1)}\left(t_{1}, t_{n+1}\right)-\Delta_{n}^{(2)}\left(t_{+}, t_{n+1}\right)\right. \\
\left.+\left[\Delta_{n}^{(1)}\left(t_{+}+t_{n+1}\right)\right]^{2}+\left[w_{n+1}^{(1)}\left(\Phi_{n+1}\right)\right]^{2}+w_{n+1}^{(1)}\left(\Phi_{n+1}\right) \Delta_{n}^{(1)}\left(t_{+1}, t_{n+1}\right)\right)
\end{array} \\
& +d \sigma_{n+1}^{(1)}\left[Q_{n+2}<Q_{c}\right]_{\left(\Phi_{n+1}\right)} \\
& \otimes\left[1-w_{n+1}^{(1)}\left(\Phi_{n+1}\right)-\Delta_{n}^{(1)}\left(t+, t_{n+1}\right)\right] \Delta_{n}\left(t+, t_{n+1}\right) w_{n+1}^{(\infty)}\left(\Phi_{n+1}\right) \\
& +\oint_{t-}^{t+} d \sigma_{n+2}^{(0)}\left[Q_{n+2}>Q_{c}\right]_{\left(\Phi{ }_{n+2}\right)} \\
& \otimes \Delta_{n}\left(t_{+}, t_{n+1}\right) w_{n+1}^{(\infty)}\left(\Phi_{n+1}\right) \\
& \otimes\left[\left(1-w_{n+1}^{(1)}\left(\Phi_{n+1}\right)-\Delta_{n}^{(1)}\left(t_{+}, t_{n+1}\right)\right) 1_{n+1}^{n+2}\right. \\
& -\Delta_{n+1}\left(t_{n+1}, t_{n+2}\right) w_{n+2}^{(\infty)}\left(\Phi_{n+2}\right) \\
& \left.\otimes\left(1-w_{n+1}^{(1)}\left(\Phi_{n+1}\right)-w_{n+2}^{(1)}\left(\Phi_{n+2}\right)-\Delta_{n}^{(1)}\left(t_{+}, t_{n+1}\right)-\Delta_{n+1}^{(1)}\left(t_{n+1}, t_{n+2}\right)\right) \mid\right] \\
& +\oint_{t^{-}}^{t} d \sigma_{n+2}^{(1)}\left[Q_{n+2}>Q_{c} \wedge Q_{n+3}<Q_{c}\right]_{\left(\Phi_{n+2}\right)} \\
& \otimes\left[\Delta_{n\left(t+, t_{n+1}\right) w_{n+1}^{(\infty)}\left(\Phi_{n+1}\right) 1_{n+1}^{n+2}}^{\Delta_{n+1}}\right. \\
& \left.-\mid \Delta_{n}\left(t_{+}, t_{n+1}\right) \Delta_{n+1}\left(t_{n+1}, t_{n+2}\right) w_{n+1}^{(\infty)}\left(\Phi_{n+1}\right) w_{n+2}^{(\infty)}\left(\Phi_{n+2}\right)\right] \\
& +\oiint_{t-}^{t} d \sigma_{n+3}^{(0)}\left[Q_{n+3}>Q_{c}\right]_{\left(\Phi_{n+3}\right)} \\
& \otimes\left[\Delta_{n}\left(t_{+}, t_{n+1}\right) w_{n+1}^{(\infty)}\left(\Phi_{n+1}\right) 1_{n+1}^{n+3}\right. \\
& \left.-\left\lfloor\Delta_{n}\left(t_{+}, t_{n+1}\right) \Delta_{n+1}\left(t_{n+1}, t_{n+2}\right) w_{n+1}^{(\infty)}\left(\Phi_{n+1}\right) w_{n+2}^{(\infty)}\left(\Phi_{n+2}\right) 1_{n+2}^{n+3}\right]\right\} \\
& +O_{n+2}\left\{d \sigma_{n+2}^{(0)}\left[Q_{n+2}>Q_{c}\right]_{\left(\Phi{ }_{n+2}\right)}\right. \\
& \text { - Mildly ~ UN2LOPS } \\
& \text { - Three-jet contribution with } \\
& \text { bias correction trickles down } \\
& \text { - Weight of LO two-jet } \\
& \left(d \sigma_{n+2}^{(0)}\right) \text { somewhat subtle } \\
& \text { - Weight of LO one-jet requires } \\
& \text { 2nd-order PS expansion }
\end{aligned}
$$

$:=\mathrm{O}_{n}\left\{d \sigma_{n}^{(0+1+2+3)[\mathrm{EXC}]}\left(\Phi_{n}\right)\right.$
$+\oint_{t^{-}}^{t^{+}} d \sigma_{n+1}^{(2)}\left[Q_{n+2}<Q_{c} \wedge Q_{n+3}<Q_{c}\right]_{\left(\Phi_{n+1}\right)}\left[\mathbb{1}_{n}^{n+1}-\Delta_{n}\left(t_{+}, t_{n+1}\right) w_{n+1}^{(\infty)}\left(\Phi_{n+1}\right)\right]$
$+\oint_{t^{-}}^{t^{+}} d \sigma_{n+1}^{(0)}\left(\Phi_{n+1}\right)\left[\mathbb{1}_{n}^{n+1}-\left[\begin{array}{l}\Delta_{n}\left(t_{+}, t_{n+1}\right) w_{n+1}^{(\infty)}\left(\Phi_{n+1}\right) \\ \cdot\left(1-w_{n+1}^{(1)}\left(\Phi_{n+1}\right)-w_{n+1}^{(2)}\left(\Phi_{n+1}\right)-\Delta_{n}^{(1)}\left(t_{+}, t_{n+1}\right)-\Delta_{n}^{(2)}\left(t_{+}, t_{n+1}\right)\right. \\ \left.+\left[\Delta_{n}^{(1)}\left(t_{+}, t_{n+1}\right)\right]^{2}+\left[w_{n+1}^{(1)}\left(\Phi_{n+1}\right)\right]^{2}+w_{n+1}^{(1)}\left(\Phi_{n+1}\right) \Delta_{n}^{(1)}\left(t_{+}, t_{n+1}\right)\right)\end{array}\right]\right.$
$\left.+\oint_{t^{-}}^{t^{+}} d \sigma_{n+1}^{(1)}\left[Q_{n+2}<Q_{C}\right]\left(\Phi_{n+1}\right)\left[\mathbb{1}_{n}^{n+1}-\Delta_{n}\left(t_{+}, t_{n+1}\right) w_{n+1}^{(\infty)}\left(\Phi_{n+1}\right)\left(1-w_{n+1}^{(1)}\left(\Phi_{n+1}\right)-\Delta_{n}^{(1)}\left(t_{+}, t_{n+1}\right)\right)\right]\right]$
$+\oiint_{t^{-}}^{t_{n+2}^{+} d \sigma_{n+2}^{(0)}\left[Q_{n+2}>Q_{c}\right]}{ }_{\left(\Phi_{n+2}\right)}\left[\mathbb{1}_{n}^{n+2}-\underline{\left.\Delta_{n}\left(t_{+}, t_{n+1}\right) w_{n+1}^{(\infty)}\left(\Phi_{n+1}\right)\left(1-w_{n+1}^{(1)}\left(\Phi_{n+1}\right)-\Delta_{n}^{(1)}\left(t_{+}, t_{n+1}\right)\right) 1_{n+1}^{n+2}\right]}\right.$
$+\oiint_{t^{-}}^{t} d \sigma_{n+2}^{(1)}\left[Q_{n+2}>Q_{c} \wedge Q_{n+3}<Q_{c}\right]_{\left(\Phi_{n+2}\right)}[\mathbb{1}_{n}^{n+2}-\underbrace{}_{\Delta_{n}\left(t_{+}, t_{n+1}\right) w_{n+1}^{(\infty)}\left(\Phi_{n+1}\right) 1_{n+1}^{n+2}}]$
$\left.+\oiint_{t^{-}}^{t+} d \sigma_{n+3}^{(0)}\left[Q_{n+3}>Q_{c}\right]_{\left(\Phi_{n+3}\right)}\left[\mathbb{1}_{n}^{n+3}-\Delta_{\Delta_{n}\left(t_{+}, t_{n+1}\right) w_{n+1}^{(\infty)}\left(\Phi_{n+1}\right) 1_{n+1}^{n+3}}\right]\right\}$

- PS effects removed identically
- bias-corrected (1) contributions complement exc. σ precisely

