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pQCD picture of jet quenching
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Jets in dense QCD plasma: basic processes

@ Jet physics involves a broad range of physical scales

T Qne PQCD evolution Q~prR
1071 10° 10! 102 103
[GeV]

e Transverse momentum broadening
o Medium-induced emissions pQCD regime

e Color decoherence

@ Many more: hadronization, thermalization, medium response...
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Parton propagation in dense media (1/3)

Transverse momentum broadening

T E pr+ky
At
@ In the multiple soft scattering regime = P(k ) is Gaussian.
(k1) = gAt

@ For a jet path lentgh L, typical “saturation scale” Q2 = gL.

T Qnp Qs ~ V4L
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Q~prR
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Parton propagation in dense media (2/3)

Medium induced emissions

@ Medium-induced spectrum:

Crdw dt
d3Pmie = AstR 7(*] ,Pbroad(g)dgv with tf,med =V w/a
™ w tf,med N——

Gaussian

@ Typical scale for hardest MIE over L: w, ~ §L2.

@ No collinear divergence when § — 0.

>

'%
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Parton propagation in dense media (2/3)

Medium induced emissions

T QNp wbr @s we Q~prR

1071 10° 10 102 103
[GeV]
@ Soft divergence resummed via an evolution equation with rate
dPhie/dt
@ Multiple branching regime for w ~ wy,, = a2§L°.

@ Turbulent energy flow from hard to soft sector, at large angles.
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Parton propagation in dense media (3/3)

Color decoherence

@ Quantum color decoherence: independent sources.

= Characteristic time scale ty = (§6%)~%/3.

= tg=Le02=02=1/(gL3).
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In medium jet evolution to leading-log accuracy

@ The evolution of a jet factorizes into three steps:

(1) An angular ordered vacuum-like shower inside the medium ,
(2) medium-induced emissions triggered by previous sources,
(3) finally, a vacuum-like shower outside the medium.

@ Re-opening of the phase space for the first emission outside the
medium.

“Factorized” picture

W
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In medium jet evolution to leading-log accuracy

@ The evolution of a jet factorizes into three steps:
(1) An angular ordered vacuum-like shower inside the medium ,
(2) medium-induced emissions triggered by previous sources,
(3) finally, a vacuum-like shower outside the medium.

@ Re-opening of the phase space for the first emission outside the
medium.

e Red line:

tr = tf,med =V W/CAI

outside
medium
|-

e Blueline: tr =1L, 0 =0,
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Numerical results using Monte-Carlo methods

@ 3 medium parameters: §, L, s mea (vertex for MIEs), parton level.

x-section in PbPb

RAA ™ Tx-section in PP

= Results including the
medium expansion and
nPDF.
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@ Large p7 suppression due to the increase of vacuum-like sources.

@ Raa mainly controlled by a2 412
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pT-broadening beyond leading-order

Transverse momentum
broadening beyond
leading-order

pr E pr—Fky

A
\/

8/13



pT-broadening beyond leading-order
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Transverse momentum broadening at tree-level

@ Fourier transform of the dipole S-matrix
P(kj_) — /dQXJ_e—ka.XJ_ e—%@(l/xi)’-xi

@ Tree level quenching parameter depends on the size of the dipole

Lo(x1) = doln
gquo\XL)=4qoln
x3 p?

for x3 2 < 1.

tree level
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pT-broadening beyond leading-order
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NLO corrections and double-logarithmic resummation

@ Double logarithmic enhancement of the NLO corrections

~ n a
anLo ~ GrLo [1 + ?5 |“2(L/7'0)}

@ Resummation to all orders via the evolution equation:

Al 12 K ”
M) g [
or Q) K

with Q2(7) = §(r, Q(7))T.
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pT-broadening beyond leading-order
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Extended geometric scaling

o At tree-level, P(kt) = f(k7/Qs) around the peak k1 ~ Qs but not
at large k.

@ After DL resummation, for In(L/7) > 1

= In( kZL >
a3 )L e e if kK < Q2(L)
= 2
Q2(L) el In( il > 2
s c _ K
e aw {1 —+ C2C1 In (—QSZ(LL))} else

with ¢ = 14 2y/a&s + a2 + 2as. 1024

101 4

— L=10fm
— L =50fm
— L =100 fm

10°4

10-14 4= 0.5GeV2/fm, & = 0.2

= extended geometric scaling :
beyond the peak! 1021

107! 10° 10!
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pT-broadening beyond leading-order
ooooe

New emergent phenomenon: anomalous diffusion in kt

@ The typical width of the distribution scales like
<ki>mcd ~ Ll/er\/C_TS

@ = super-diffusive behaviour. NLO corrections yields super-diffusion
in momentum space.

@ Heavy tailed distribution P(k ) ~ (1/k)*2V%

tree level

10} resummed, & = 0.2 |

A x L
4—2/&
.@ 101 kr v 1
=
=
% 0o L
= 107 o =05GeV?/fm, L = 6 fm & .4, A
Brownian Levy flight
-5 .
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Conclusion and perspectives

@ A factorized picture for jet quenching derived from pQCD.

@ For precise phenomenology, one should:

(1) Go beyond leading-log for the determination of the phase
space boundaries.

(2) Go beyond the multiple soft scattering approximation for the
treatment of the medium-induced radiaitons.

(3) Include NP modeling into this picture: hadronization,
thermalization, medium-response,...

(4) (non exhaustive list)

@ Transverse momentum broadening in QCD plasma beyond leading
order exhibits extended geometric scaling and share similarities with
super-diffusive random walks.

THANK YOU!
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Other IRC safe jet observables

@ Framework successfully applied to jet substructure observables such
as Soft Drop z; and 0,.

@ z, (64) ~ typical momentum fraction (angle) of a hard splitting in a
jet.

Nuclear effects for z, Nuclear effects for 6,

250 < pr,jet <300 GeV, R=0.4, Z;t =0.1, 6,> 0.1
V=1, to=1/Qs, Goto = Q?

250 <prjet <300 GeV, R = 0.4, Z¢,: = 0.1
Y=1, to=1/Qs, Goto = Q2

R(69)

s
0.0 0.1 0.2 0.3 0.4 0.5

@ Suppression of large z,, 0, jets since they lose more energy.
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