





## Hard probes of heavy ion collisions with ATLAS

Martin Rybar on behalf of the ATLAS Collaboration

Charles University in Prague

**ISMD 2021** 

July 16, 2021

### What do we want to know...

- What are the properties and degree of freedoms of the medium created in heavy ion collisions?
- How does the color charge interact and loose energy in the medium?
  - Is there flavour or mass dependence?
  - What is the medium response?
- What is the resolution scale of the medium?
- Is there jet quenching in small systems?
- How does the hadronization process work?

### Hard probes of QGP

We can use hard probes to answer these questions!



Fast partons lose energy in the medium | jet quenching

Hard processes probe the QGP at various scales.

### Jet quenching measurements

Many observables: inclusive jets, balance, jet structure...



4 ...each observable is sensitive to different aspects of energy loss.

### Let's start with jet counting....



### Measure of modifications: Nuclear modification factor



$$R_{AA} = rac{1}{N_{
m coll}}$$
 =  $\frac{\frac{{
m d}N_{AA}}{{
m d}p_{
m T}}}{N_{
m coll}}$  QCD in wacuum

Caveat on  $R_{AA}$ : Sensitive to shapes of  $p_{T}$  spectra

Lorentz Boltzmann Transport (LBT) model (arXiv:1503.03313) Soft Collinear Effective Field Theory (SCETg) (arXiv:1509.02936) Effective Quenching (EQ) model (arXiv:1504.05169)

### Jet anisotropies

Measuring jet yields deferentially w.r.t. reaction plane.



The angular distribution of jets is described via a Fourier expansion:  $\frac{dN}{d\phi} \propto 1 + 2 \sum_{n=1}^{n} v_n \cos(n(\phi - \Psi_n))$ 

### Path-length dependence: jet v<sub>2</sub>



In-plane: shorter path length in the medium  $\Rightarrow$  less suppression Out-of-plane: longer path length in the medium  $\Rightarrow$  more suppression  $\Rightarrow$  **positive v**<sub>2</sub>.

### Fluctuations: Jet v<sub>n;n>2</sub>

#### Can give insight into the role of fluctuations in the initial state.



• Jet  $v_3$  and  $v_4$  compatible with zero with current precision.

# Balance & angular correlation measurements



### Di-jet balance

Probes path-length dependence and per-jet fluctuations of the jet quenching.



- Flattening of the  $x_{\rm J}$  distributions in central Pb+Pb at lower  $p_{\rm T}$ .
- Still some, but smaller, modification between Pb+Pb and pp for jets  $p_{T} > 400$  GeV.

### Di-jet balance

Probes path-length dependence and per-jet fluctuations of the jet quenching.



Linearized transport model with a jet-induced hydrodynamic response (LIDO) is consistent with the centrality and  $p_{T,1}$  seen in the data.

### Jet structure and substructure



# Moving forward with measurements of hadrons in jets

Expanding existing measurements of inclusive jet fragmentation measurements and jet shapes (including large angles) measurements:

Tagged jets and identified hadrons...



# Towards Z-tagged measurements: inclusive fragmentation





Ratio of inclusive jet fragmentation functions in Pb+Pb and pp.

# Towards Z-tagged measurements: inclusive fragmentation



Ratio of inclusive jet fragmentation functions in Pb+Pb and pp.

### **Z-tagged measurements**





### **Z-tagged measurements**

- Quark dominated jet sample
- Access to low  $p_{\scriptscriptstyle T}$  (jet) region.
- Comparable features as in other measurements of jet fragmentation.



### **Z-tagged measurements**

- Quark dominated jet sample.
- Testing role of parton virtuality when comparing Z- and \(\chi\)-tagged measurements.
- Access to low  $p_{T}$  (jet) region
- Y-tagged measurements differs in kinematic region
   → large quenched jets not included.



### Jet substructure

#### Does the jet suppression depend on jet structure?



# Dependence of jet suppression on substructure



- Soft contribution is removed from R=1.0 re-clustered jets.
  - → Larger suppression compared to ordinary small-*R* jets.
  - → Focus on hard splittings.

# Dependence of jet suppression on substructure



A continuous increase of the suppression with increasing centrality.

22

The jets with single sub-jet are less suppressed with respect to those with higher sub-jet multiplicity → color decoherence.

### Open heavy flavor



- Mass of heavy quarks as additional relevant scale.
- Short formation time & small thermal production rate.
- pQCD calculable.
- Energy loss depends on:
  - Color charge  $\Delta E_{\rm g} > \Delta E_{\rm u,d,s}$
  - Parton mass  $\Delta E_{u,d,s} > \Delta E_c > \Delta E_b$

### Open heavy flavor



DREENA-B (arXiv:1805.04786)

Dynamic energy loss in 1+1D expanding QCD medium.

### Open heavy flavor



- Charm more suppressed than bottom  $p_{\tau}$  < 8 GeV.
  - Radiative energy loss reduced by "dead-cone" effect.
  - The mass splitting in  $R_{AA}$  quantitatively described by theory.
  - The  $p_{T}$  dependence of mass splitting  $\rightarrow$  relative contribution or energy loss mechanisms.
- No conclusion can be made for higher  $p_{\tau}$ .

25

### Summary

- Hard probes provide access into various QCD phenomena.
- Jet (sub)structure is a fast developing field and still growing.
  - → New jet substructure and differential measurements come along with new techniques and performance improvement.
- Charm and beauty  $R_{\rm AA}$  measured in a wide range of  $p_{\rm T}$  and in many channels.

$$\rightarrow R_{AA}^{beauty} > R_{AA}^{strange} > R_{AA}^{charm} \sim R_{AA}^{light}$$

- Using high statistics LHC data and new techniques bring us to era of precise measurements HI collisions.
  - → Strong constraints on theoretical models.
- But there are opened questions...
  - → Resolution scale of the QGP, role of medium response, quenching in small systems...

Looking forward to results using HI data from Run3.

### Backup

### Jet substructure in HI collisions

- Does the jet suppression depend on jet structure?
- Jet mass carries information about transverse structure of jet.
  - connection to virtuality of initial parton.



- No significant change of  $R_{AA}$  with mass
  - $\rightarrow$  consistent with inclusive jet  $R_{AA}$ .

### Di-jet asymmetry



• Much less modification at high  $p_T$ .

### Gamma-jet balance





- Some models able to describe basis features.
- Difficult to describe detail behavior of the distribution.

### Jet substructure

Classifying parton splittings using spiting scale, opening angle, momentum

fraction z, sub-jet multiplicity,...





Phys. Rev. Lett. 124

 $ln(R/\Delta R)$