

Quantized fragmentation of 3-dim QCD string

(Šárka Todorova-Nová, Charles University, Prague)

- > follow-up of my talk at ISMD 2015
- > replacing 1-dim Lund string (PYTHIA/JETSET,) by a helix

B.Andersson et al.: "Is there a screwiness at the end of partons showers?

Phys. Rept. **97, 31 (1983)391**

JHEP09(1998)14

Common points:

- o confinement modeled by (tangential) string tension κ (~1GeV/fm)
- \circ string breaks via $g \rightarrow q\bar{q}$

Differences:

- intrinsic p_T added « by-hand » for 1-dim string
- breakup points defining hadron in 1-dim string scheme are by construction causally disconnected <-> hadron masses are external parameters of the model

3-dim string allows to establish a causal link between breakups

Case A: information about string breakup propagates along the string

- -> (massless) quark propagating along the string triggers the next breakup
- -> transverse and longitudinal momentum components decouple

$$ec{p}_T = \kappa R \int_A^B \exp{i(\Phi \pm \pi/2)} d\Phi$$

$$= 2\kappa R \sin{\frac{\Phi_B - \Phi_A}{2}} \exp{i(\frac{\Phi_A + \Phi_B \pm \pi}{2})},$$

$$m_{AB} = \kappa R \sqrt{(\Phi_B - \Phi_A)^2 - (2\sin{\frac{\Phi_B - \Phi_A}{2}})^2}.$$

helical string parametrized by radius R and phase Φ

Hadron mass driven by
the string topology in the transverse plane
- derived quantity, no longer a parameter

Deployment of the causal constraint reveals the quantized nature of hadron formation Φ_{AB} -> n $\Delta\Phi$

$$m_T(n) = \sqrt{m^2 + p_T^2} = \kappa R n \Delta \Phi$$

3-dim string allows to establish a causal link between breakups

Case A: information about string breakup propagates along the string

String parameters (κ R, $\Delta\Phi$) constrained by mass spectrum of - for example – pseudoscalar mesons

Model not complete (no quark masses, no detailed description of qg interaction)

-> intrinsic precision ~ 3 %

 $\kappa R \sim 0.07 \text{ GeV}$ $\Delta \Phi \sim 2.8 \text{ rad}$

······ π^{+,-} mass

 π^0 mass

η' mass

---- ω mass

200

180

160

140

120

k R [MeV]

3-dim string allows to establish a causal link between breakups

Case B: information about string breakup propagates across string loops

-> baryon formation

arXiv:2103.05269[hep-ph]

Nucleons (p,n) are n=5 states

Nucleons naturally fit in the model of quantized fragmentation of helical QCD string when cross-talk between string loops allowed

FIG. 3. Schema of correlated (induced) string breakup across string loops. Green band indicates the color flow ordering of the gluon ladder. Excited gluon – which splits promptly into a $Q\bar{Q}$ pair – is marked in red.

Case B: information about string breakup propagates across string loops -> baryon formation

FIG. 3. Schema of correlated(induced) string breakup across string loops. Green band indicates the color flow ordering of the gluon ladder. Excited gluon – which splits promptly into a $Q\bar{Q}$ pair – is marked in red.

Idem for Λ – like state n = 6

k R [MeV] Λ (bound state): 2(1)3(3)1(2) mass 71 ······ Λ (p/n+π) : 1(1)3(3)1(1)1(1) mass 70 69 68 ⊟ 66 η mass 65 ·η' mass 64 2.75 2.8 2.85 2.9 $\Delta\Phi$

both bound and unbound state (p+n) fits well the quantization scheme within 3% precision allowance (no s-quark involved)

Model of helical string overconstrained, plenty of observables ...

... hadron masses, intrinsic p_T , correlations between adjacent hadrons

Predicted momentum difference between (colour ordered) direct pions, for helical string with constant

Pair rank difference r	1	2	3	4	5
Q expected [MeV]	266 ± 8	91 ± 3	236 ± 7	171 ± 5	178 ± 5

- -> threshold-like correlation between adjacent (opposite-sign,OS) pion pairs
- -> low Q dominated by rank 2 (like-sign,LS) pion pairs?

Phys.Rev.D96(2017) 092008

pitch

Studied by ATLAS with help of difference between OS and LS spectra

$$\Delta(Q) = \frac{1}{N_{ch}} [N(Q)^{OS} - N(Q)^{LS}]$$

Source of anomalous production of close LS pairs isolated by selecting charge-ordered hadron chains (+-+,-+-) via mass minimization $(\Delta_{3h}$, see backup)

In Rivet: ATLAS_ 2017_I1624693

Model of helical QCD string overconstrained, plenty of observables...

... hadron masses, intrinsic p_T , correlations between adjacent hadrons

Predicted momentum difference between (colour ordered) direct pions, for helical string with constant

Pair rank difference r	1	2	3	4	5
Q expected [MeV]	266 ± 8	91 ± 3	236 ± 7	171 ± 5	178 ± 5

- -> threshold-like correlation between adjacent (opposite-sign,OS) pion pairs
- -> low Q dominated by rank 2 (like-sign,LS) pion pairs?

Phys.Rev.D96(2017) 092008

pitch

Studied by ATLAS with help of difference between OS and LS spectra

$$\Delta(Q) = \frac{1}{N_{ch}} [N(Q)^{OS} - N(Q)^{LS}]$$

Source of anomalous production of close LS pairs isolated by selecting charge-ordered hadron chains (+-+,-+-) via mass minimization (Δ_{3h})

 $Q(r) = 4\kappa R \sin(\Delta \Phi/2) |\sin(r\Delta \Phi/2)|$

Model of helical QCD string overconstrained, plenty of observables ...

... hadron masses, intrinsic p_T , correlations between adjacent hadrons

k R [MeV]

Study of ordered hadron chains provides an independent measurement of string parameters.

 $\Delta\Phi$ measured with precision of 1%

Quantized fragmentation explains the entire anomalous production of close LS pairs, (previously incorrectly attributed to BEC)

More results coming soon from the analysis of Run2 data in ATLAS (pp & HI).

Δ observable is an ideal candidate for a benchmark evaluation of hadronization models: provides (inclusively) the same information we would obtain from colour-adjacent hadrons with a perfect knowledge of colour flow in the event (about jet substructure, among other).

Very poorly described by conventional models (string & clusters alike). Worse still, models converge between themselves, far from data – we have no tool to properly estimate the hadronization systematics.

The absence of correlations between adjacent hadrons is possibly the dominant source of discrepancies here.

3-dim QCD string allows to address the issue.

Model of helical QCD string alive and kicking: a lot of material to process both in the experiment and in the phenomenology

Hadron content & production mechanism

- intrinsic p_T & correlations

Parton shower & fragmentation function

- jet & inclusive spectra

long ordered hadron chains
<-> long range corrrelations

heavy quarks & glueballs

implications for QFT

The most natural explanation for the quantization is a limited number of gluons in the field (as few as two per $\Delta\Phi$?)

- ✓ quantized fragmentation wipes away the sea of non-perturbative gluons
- **✓ QCD vacuum becomes sparsely populated and well ordered**

THIS WAS THE GOAL OF « SCREWINESS » PAPER, at the origin of helical string

- full parton shower without collinear divergencies
- dynamic model of proton (as system of 3 quarks + 8(9) gluons)

feasible?

backup slides

Source of « Bose-Einstein correlations « (BEC)

excess of close LS pairs correlates
 with the presence of correlated
 +-+, -+- triplets consistent with
 chains of adjacent direct pions

$$\Delta_{3h}(Q) = \frac{1}{N_{\text{ch}}} \sum_{k=1}^{N_{\text{ev}}} \sum_{i=1}^{n_{\text{ch}}^k} w_i \left\{ \frac{1}{2} \delta(Q - Q_{01}^i) + \frac{1}{2} \delta(Q - Q_{12}^i) - \delta(Q - Q_{02}^i) \right\}$$

Measured also via Dalitz plot

$$X = \sqrt{3} \frac{T_0 - T_2}{\sum_{i=0}^2 T_i}, \qquad Y = \frac{3T_1}{\sum_{i=0}^2 T_i} - 1,$$

(T_i kinetic energy in the rest frame of triplet)

0.0005

Model of helical QCD string overconstrained, plenty of observables ...

... hadron masses, intrinsic p_T , correlations between adjacent hadrons

Possibility to further cross-check model predictions and/or distinguish different production modes.

Requires knowledge of string direction

(LEP : pencil-like events

LHC: soft minimum bias events)

TABLE I. Model prediction for intrinsic transverse momentum of direct hadrons, for measured (Appendix A) string parameters.

hadron	production mode	quantized	p_T	
		content $[\Delta\Phi]$	[MeV]	
π	induced, light-front	1	135 (+4,-6)	
$ \eta $	induced, light-front	3	119 (+3,-5)	
ω	induced, light-front	4	86 (+2,-4)	
η'	induced, light-front	5	90 (+3,-4)	
p,n	induced, across loop	1+2+2	206 (+6,-9)	
p,n	induced, across loop	2+1+2	135 (+4,-6)	
p,n	induced, across loop	1+3+1	172 (+5,-7)	
Λ	induced, across loop	1+3+2	208 (+6,-9)	

arXiv:2103.05269[hep-ph]