- Hadron structure - Forward and diffractive physics - Collectivity and multiple-scattering - Jets and QCD at high scales - Hadron spectroscopy - High-temperature QCD - Hadronic issues in heavy-flavour physics - Cosmic ray and astrophysics # Nuclear modification factors of strange mesons measured by PHENIX #### Vladislav Borisov for the PHENIX Co-Authors: Yaroslav Berdnikov, Alexander Berdnikov, Dmitry Kotov, Iurii Mitrankov Peter the Great St. Petersburg Polytechnic University #### Motivation - > Strangeness content vs. first generation quarks in hadron production: - ✓ Strangeness enhancement, recombination and radial flow at moderate p_T - ✓ Energy loss flavor dependence at high p_T - ➤ Pythia 8 and AMPT predictions: - ✓ Study from different perspectives (soft QCD, Lund Model, coalescence from QGP) - >PHENIX study different observables in a large variety of SYSTEMs - ✓ Minimal conditions to form a QGP and its properties #### Hadrons in this talk #### (hidden) strange | h | Quark content | Decay
modes | BR,
% | Mass,
MeV | |----------------------------|--|-------------------------------|----------|--------------| | K^+/K^- | us̄ / sū | | | ~495 | | K_S^0 | $\frac{d\overline{s}-s\overline{d}}{\sqrt{2}}$ | $\pi^0\pi^0$ | ~30 | ~498 | | $K^{0*}/\overline{K^{0*}}$ | $d\overline{s} / s\overline{d}$ | $\pi^{\mp}K^{\pm}$ | ~67 | ~896 | | φ | \sim 0.9999 · $s\bar{s}$ | K ⁺ K ⁻ | ~49 | ~1019 | #### light flavored | h | Quark content | Decay
modes | BR,
% | Mass,
MeV | |------------------|--|----------------|----------|--------------| | πο | $\frac{u\overline{u}-d\overline{d}}{\sqrt{2}}$ | γγ | ~99 | ~135 | | π^+/π^- | $u\overline{d}$ / $d\overline{u}$ | | | ~140 | | ω | $\sim \frac{1}{\sqrt{2}} \left(u \overline{u} + d \overline{d} \right)$ | $\pi^0\gamma$ | ~8.4 | ~783 | | p/\overline{p} | $uud / \overline{u}\overline{u}\overline{d}$ | | | ~938 | ## Small Systems ## Ratios in small systems No strangeness enhancement A hint of proton enhancement ## Ratios in small systems Radial flow or recombination ISMD 2 0 2 1 - $\triangleright \varphi \& K^{0*} R_{AB}$ follows other light mesons R_{AB} - ➤ Protons yields are enhanced in 0-20% ³He+Au - ✓ Recombination can explain protons $R_{AB} > \varphi R_{AB}$ - X Radial flow No baryon and strangeness enhancement - ✓ Pythia 8 is in well agreement with R_{pAl} for φ - X Pythia 8 underestimates φ R_{AB} in p/d/³He+Au - $\triangleright \varphi R_{pAl}$ is well estimated by default AMPT calculations - \triangleright String melting AMPT well predicts φ yields in p/d/ 3 He+Au Minimal conditions to from QGP may lie in between p+Al and p+Au ## Large Systems At intermediate p_T : $(p + \bar{p})/2$ $R_{AB} \ge \varphi$, K^{*0} $R_{AB} \ge \pi^0$, η R_{AB} At intermediate p_T : Interplay of radial flow, strangeness + recombination Flavor independent suppression at high- p_T - ✓ String melting AMPT well predicts φ R_{CuAu} - \checkmark Coalescence can explain φ yields enhancement - X Pythia failed at central Cu+Au $\langle R_{AB} \rangle$ of φ meson scales with collision system size ## Summary ### Summary #### **Small systems:** Minimal conditions to from QGP may lie in between p+Al and p+Au: - ✓ A hint of proton enhancement in p/d/³He+Au - \checkmark String melting AMPT ϕ $R_{p/d/^3He+Au}$ & Pythia and def AMPT for ϕ R_{pAl} - X But NO strangeness enhancement in small systems #### Large systems: No flavor dependence at high- p_T in heavy-ion collisions Coalescence might be an answer for strangeness enhancement: ✓ String melting AMPT well predicts φ R_{CuAu} Strange meson production scales with collision system size