- Hadron structure
- Forward and diffractive physics
- Collectivity and multiple-scattering
- Jets and QCD at high scales

- Hadron spectroscopy
- High-temperature QCD
- Hadronic issues in heavy-flavour physics
- Cosmic ray and astrophysics



# Nuclear modification factors of strange mesons measured by PHENIX

#### Vladislav Borisov for the PHENIX

Co-Authors: Yaroslav Berdnikov, Alexander Berdnikov, Dmitry Kotov, Iurii Mitrankov

Peter the Great St. Petersburg Polytechnic University

#### Motivation



- > Strangeness content vs. first generation quarks in hadron production:
  - ✓ Strangeness enhancement, recombination and radial flow at moderate p<sub>T</sub>
  - ✓ Energy loss flavor dependence at high p<sub>T</sub>
- ➤ Pythia 8 and AMPT predictions:
  - ✓ Study from different perspectives (soft QCD, Lund Model, coalescence from QGP)
- >PHENIX study different observables in a large variety of SYSTEMs
  - ✓ Minimal conditions to form a QGP and its properties





#### Hadrons in this talk



#### (hidden) strange

| h                          | Quark content                                  | Decay<br>modes                | BR,<br>% | Mass,<br>MeV |
|----------------------------|------------------------------------------------|-------------------------------|----------|--------------|
| $K^+/K^-$                  | us̄ / sū                                       |                               |          | ~495         |
| $K_S^0$                    | $\frac{d\overline{s}-s\overline{d}}{\sqrt{2}}$ | $\pi^0\pi^0$                  | ~30      | ~498         |
| $K^{0*}/\overline{K^{0*}}$ | $d\overline{s} / s\overline{d}$                | $\pi^{\mp}K^{\pm}$            | ~67      | ~896         |
| φ                          | $\sim$ 0.9999 · $s\bar{s}$                     | K <sup>+</sup> K <sup>-</sup> | ~49      | ~1019        |

#### light flavored

| h                | Quark content                                                            | Decay<br>modes | BR,<br>% | Mass,<br>MeV |
|------------------|--------------------------------------------------------------------------|----------------|----------|--------------|
| πο               | $\frac{u\overline{u}-d\overline{d}}{\sqrt{2}}$                           | γγ             | ~99      | ~135         |
| $\pi^+/\pi^-$    | $u\overline{d}$ / $d\overline{u}$                                        |                |          | ~140         |
| ω                | $\sim \frac{1}{\sqrt{2}} \left( u \overline{u} + d \overline{d} \right)$ | $\pi^0\gamma$  | ~8.4     | ~783         |
| $p/\overline{p}$ | $uud / \overline{u}\overline{u}\overline{d}$                             |                |          | ~938         |









## Small Systems





## Ratios in small systems











No strangeness enhancement

A hint of proton enhancement



## Ratios in small systems











Radial flow or recombination









ISMD 2 0 2 1

- $\triangleright \varphi \& K^{0*} R_{AB}$  follows other light mesons  $R_{AB}$
- ➤ Protons yields are enhanced in 0-20% <sup>3</sup>He+Au









- ✓ Recombination can explain protons  $R_{AB} > \varphi R_{AB}$
- X Radial flow













No baryon and strangeness enhancement









- ✓ Pythia 8 is in well agreement with  $R_{pAl}$  for  $\varphi$
- X Pythia 8 underestimates  $\varphi$   $R_{AB}$  in p/d/<sup>3</sup>He+Au









- $\triangleright \varphi R_{pAl}$  is well estimated by default AMPT calculations
- $\triangleright$  String melting AMPT well predicts  $\varphi$  yields in p/d/ $^3$ He+Au









Minimal conditions to from QGP may lie in between

p+Al and p+Au





## Large Systems

























At intermediate  $p_T$ :  $(p + \bar{p})/2$   $R_{AB} \ge \varphi$ ,  $K^{*0}$   $R_{AB} \ge \pi^0$ ,  $\eta$   $R_{AB}$ 















At intermediate  $p_T$ : Interplay of radial flow, strangeness + recombination Flavor independent suppression at high- $p_T$ 





















- ✓ String melting AMPT well predicts  $\varphi$   $R_{CuAu}$
- $\checkmark$  Coalescence can explain  $\varphi$  yields enhancement
- X Pythia failed at central Cu+Au

























 $\langle R_{AB} \rangle$  of  $\varphi$  meson scales with collision system size



## Summary





### Summary



#### **Small systems:**

Minimal conditions to from QGP may lie in between p+Al and p+Au:

- ✓ A hint of proton enhancement in p/d/³He+Au
- $\checkmark$  String melting AMPT  $\phi$   $R_{p/d/^3He+Au}$  & Pythia and def AMPT for  $\phi$   $R_{pAl}$
- X But NO strangeness enhancement in small systems

#### Large systems:

No flavor dependence at high- $p_T$  in heavy-ion collisions

Coalescence might be an answer for strangeness enhancement:

✓ String melting AMPT well predicts  $\varphi$   $R_{CuAu}$ 

Strange meson production scales with collision system size



