

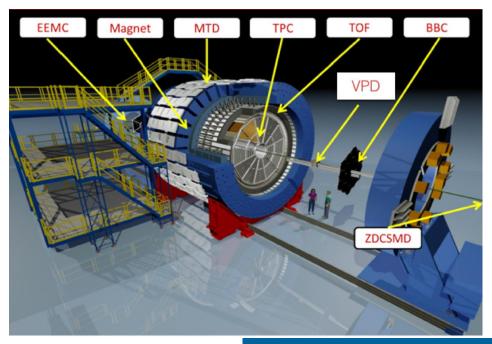
This work is supported by the grant from DOE office of science

UIC

Investigations of the longitudinal broadening of two-particle transverse momentum correlations from STAR

Niseem Magdy Abdelrahman (For The STAR Collaboration)
University of Illinois at Chicago

niseemm@gmail.com



- ightharpoonup Data set: Au +Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- ➤ Time Projection Chamber Tracking of charged particles with:
 - ✓ Full azimuthal coverage
 - $\checkmark |\eta| < 1 \text{ coverage}$
- In this analysis we used tracks with: $0.2 < p_T < 2 \text{ GeV/c}$

Motivation:

S. Gavin and M. Abdel-Aziz

The Gavin ansatz: Phys.Rev.Lett. 97 (2006) 162302

- \triangleright The p_T 2-P correlation function is sensitive to the dissipative viscous effects that are ensured during the transverse and longitudinal expansion of the collisions' medium.
- \triangleright Because such dissipative effects are more prominent for long-lived systems, they lead to longitudinal broadening of p_T 2-P correlation function as collisions become more central.
- \triangleright A proposed estimate of this broadening, $\Delta \sigma^2$, can be linked to η/s as:

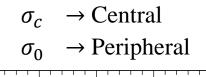
$$\Delta \sigma^2 = \sigma_c^2 - \sigma_0^2 = \frac{4}{T_c} \frac{\eta}{s} \left(\frac{1}{\tau_0} - \frac{1}{\tau_{c,f}} \right)$$

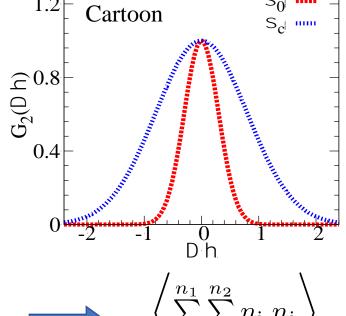
The p_T 2-P correlator: STAR Collaboration PLB 704 (2011) 467–473

$$G_{2}\left(\eta_{1}, \boldsymbol{\varphi}_{1}, \boldsymbol{\eta}_{2}, \boldsymbol{\varphi}_{2}\right) = \frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{\mathrm{T}, i} p_{\mathrm{T}, j} \right\rangle}{\left\langle n_{1} \right\rangle \left\langle n_{2} \right\rangle} = \frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{\mathrm{T}, i} p_{\mathrm{T}, j} \right\rangle}{\left\langle n_{1} \right\rangle \left\langle n_{2} \right\rangle} = \frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{\mathrm{T}, i} p_{\mathrm{T}, j} \right\rangle}{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} n_{i} n_{j} \right\rangle} r_{1,2} = -\frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{\mathrm{T}, i} p_{\mathrm{T}, j} \right\rangle}{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} n_{i} n_{j} \right\rangle} r_{1,2} = -\frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{\mathrm{T}, i} p_{\mathrm{T}, j} \right\rangle}{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} n_{i} n_{j} \right\rangle} r_{1,2} = -\frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{\mathrm{T}, i} p_{\mathrm{T}, j} \right\rangle}{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} n_{i} n_{j} \right\rangle} r_{1,2} = -\frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{\mathrm{T}, i} p_{\mathrm{T}, j} \right\rangle}{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} n_{i} n_{j} \right\rangle} r_{1,2} = -\frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{\mathrm{T}, i} p_{\mathrm{T}, j} \right\rangle}{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} n_{i} n_{j} \right\rangle} r_{1,2} = -\frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{\mathrm{T}, i} p_{\mathrm{T}, j} \right\rangle}{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} n_{i} n_{j} \right\rangle} r_{1,2} = -\frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{\mathrm{T}, i} p_{\mathrm{T}, j} \right\rangle}{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} n_{i} n_{j} \right\rangle} r_{1,2} = -\frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{\mathrm{T}, i} p_{\mathrm{T}, j} \right\rangle}{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} n_{i} n_{j} \right\rangle} r_{1,2} = -\frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{\mathrm{T}, i} p_{\mathrm{T}, j} \right\rangle}{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} n_{i} n_{j} \right\rangle} r_{1,2} = -\frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{\mathrm{T}, i} p_{\mathrm{T}, j} \right\rangle}{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} n_{i} n_{j} \right\rangle} r_{1,2} = -\frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{\mathrm{T}, i} p_{\mathrm{T}, i} p_{\mathrm{T}, i} \right\rangle}{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} n_{i} n_{j} \right\rangle} r_{1,2} = -\frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{\mathrm{T}, i} p_{\mathrm{T}, i} p_{\mathrm{T}, i} \right\rangle}{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} n_{i} n_{j} \right\rangle} r_{1,2} = -\frac{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} p_{\mathrm{T}, i} p_{\mathrm{T}, i} p_{\mathrm{T}, i} \right\rangle}{\left\langle \sum_{i}^{n_{1}} \sum_{j \neq i}^{n_{2}} n_{i} n_{j} \right\rangle} r_{1,2} =$$

- $\succ r_{1,2}$ is a number correlation, it will be unity when the particle pairs are independent
- \triangleright The $r_{1,2}$ correlations can be impacted by the centrality definition

Excluding the POI from the collision centrality definition, helps reduce the possible self-correlations.





N. Magdy and R. Lacey arXiv: <u>2101.01555</u>

Investigations of the $p_T - p_T$ correlations from STAR

STAR ☆

> The azimuthal correlations for Au+Au at 200 GeV

$$G_{2}(\Delta\varphi) = A_{0}^{p_{T}} + 2\sum_{n=1}^{6} A_{n}^{p_{T}} \cos(n\Delta\varphi) \qquad a_{n}^{p_{T}} = \sqrt{A_{n}^{p_{T}}}$$

$$0.03 - 0.03 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.02 - 0.00\%$$

$$- 0.02 - 0.00\%$$

$$- 0.02 - 0.00\%$$

$$- 0.02 - 0.00\%$$

$$- 0.02 - 0.00\%$$

$$- 0.02 - 0.00\%$$

$$- 0.02 - 0.00\%$$

$$- 0.02 - 0.00\%$$

$$- 0.02 - 0.00\%$$

$$- 0.02 - 0.00\%$$

$$- 0.02 - 0.00\%$$

$$- 0.02 - 0.00\%$$

$$- 0.02 - 0.00\%$$

$$- 0.02 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

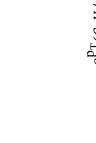
$$- 0.00 - 0.00\%$$

$$- 0.00 - 0.00\%$$

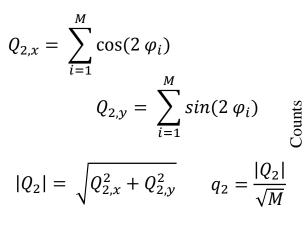
$$- 0.00 - 0.00\%$$

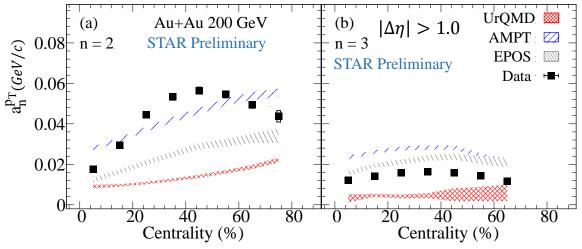
$$- 0.00 - 0.00\%$$

$$-$$

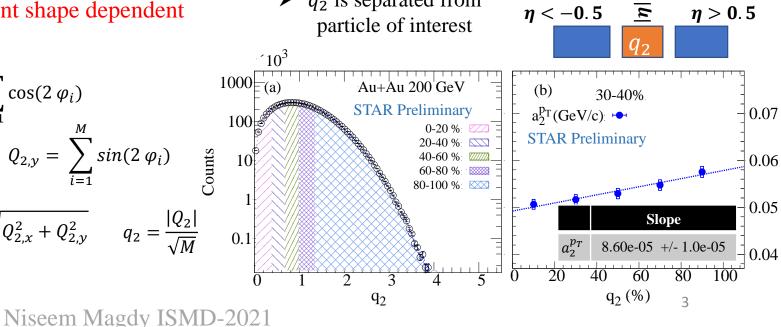


- ✓ Models do not describe the data
- ✓ Event shape dependent



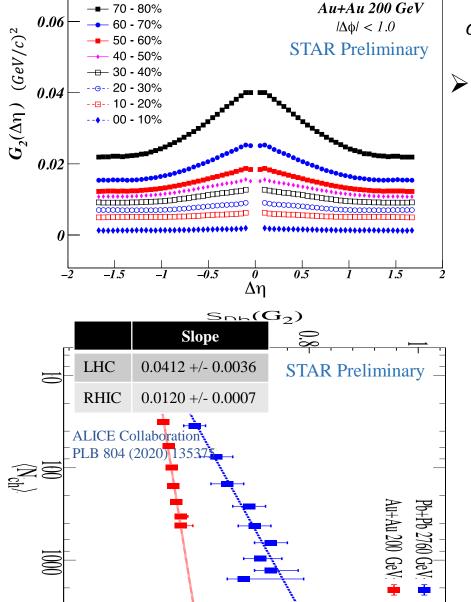


 \triangleright q_2 is separated from



Investigations of the $p_T - p_T$ correlations from STAR

➤ The longitudinal correlations for Au+Au at 200 GeV



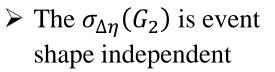
The slope of $\sigma_{\Delta\eta}(G_2)$ is softer for RHIC

✓ Smaller η/s for RHIC P. Alba et al.

PRC 98, 034909 (2018)



STAR ☆



	Slope	
Total	0.0120 +/- 0.0007	$\langle N_{ch} \rangle$
10 %	0.0119 +/- 0.0009	
90 %	0.0110 +/- 0.0012	

Niseem Magdy ISMD-2021

Investigations of the $p_T - p_T$ correlations from STAR

STAR ☆

Conclusions

We revisited the $p_T - p_T$ 2-P correlation analysis for Au+Au at 200 GeV using a new approach by excluding self-correlations and we found that;

- \triangleright The extracted $a_2^{p_T}$:
 - ✓ Decrease with harmonic order
 - \checkmark Models don't describe the $a_2^{p_T}$ data
 - ✓ Event shape dependent
- \triangleright The slope of $\sigma_{\Delta\eta}(G_2)$ vs multiplicity is:
 - ✓ Softer for RHIC (indicating smaller η/s for RHIC) than LHC
 - ✓ Event shape independent

ALICE Collaboration PLB 804 (2020) 135375

V. Gonzalez et al. Eur.Phys.J.C 81 5, 465 (2021)

N. Magdy and R. Lacey arXiv: 2101.01555

N. Magdy et al. arXiv: 2105.07912

S. Gavin and M. Abdel-Aziz Phys.Rev.Lett. 97 (2006) 162302

Sean Gavin et al. PRC 94 (2016) 2, 024921

M. Sharma et al. PRC 84 (2011) 054915

STAR Collaboration PLB 704 (2011) 467–473

These comparisons are reflecting the efficacy of the $G2(\Delta\eta,\Delta\varphi)$ correlator to differentiate among theoretical models as well as to constrain the η/s .

N. Magdy and R. Lacey arXiv: 2101.01555

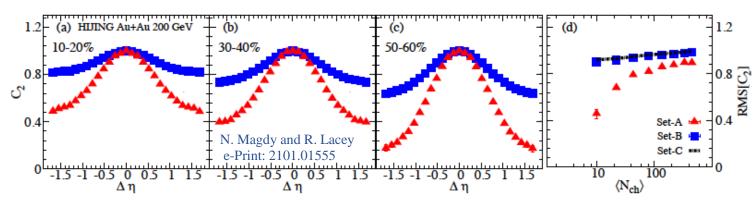
The
$$p_T$$
 2-P correlator is given as: $G_2(\eta_1, \varphi_1, \eta_2, \varphi_2) = \frac{\left\langle \sum_{i}^{n_1} \sum_{j \neq i}^{n_2} p_{T,i} p_{T,j} \right\rangle}{\left\langle n_1 \right\rangle \left\langle n_2 \right\rangle}$

The first term can be given as: $-\langle p_{T,1} \rangle_{\eta_1, \varphi_1} \langle p_{T,2} \rangle_{\eta_2, \varphi_2}$

> The first term can be given as:

$$\frac{\left\langle \sum\limits_{\mathrm{i}}^{n_{1}}\sum\limits_{\mathrm{j}\neq\mathrm{i}}^{n_{2}}p_{\mathrm{T,i}}\;p_{\mathrm{T,j}}\right\rangle}{\left\langle n_{1}\right\rangle\left\langle n_{2}\right\rangle} = \frac{\left\langle \sum\limits_{\mathrm{i}}^{n_{1}}\sum\limits_{\mathrm{j}\neq\mathrm{i}}^{n_{2}}p_{\mathrm{T,i}}\;p_{\mathrm{T,j}}\right\rangle}{\left\langle \sum\limits_{\mathrm{i}}\sum\limits_{\mathrm{i}\neq\mathrm{i}}^{n_{2}}n_{\mathrm{i}}\;n_{\mathrm{j}}\right\rangle} r_{1,2}, \qquad \qquad r_{1,2} = \frac{\left\langle \sum\limits_{\mathrm{i}}^{n_{1}}\sum\limits_{\mathrm{j}\neq\mathrm{i}}^{n_{2}}n_{\mathrm{i}}\;n_{\mathrm{j}}\right\rangle}{\left\langle n_{1}\right\rangle\left\langle n_{2}\right\rangle}.$$

- \triangleright $r_{1.2}$ is a number correlation, it will be 1 when the particle pairs are independent.
- \triangleright The $r_{1,2}$ correlations can be impacted by the centrality definition.



Comparison of the $C_2(\Delta \eta)$ correlators $(|\Delta \varphi| < 1)$ obtained from 10-20%, 30-40% and 50-60% central HIJING events for Au+Au collisions at 200 GeV.

- Set-A: with centrality defined using all charged particles in an event, (i)
- Set-B: with centrality defined using random sampling of charged particles in an event
- (iii) Set-C: with centrality defined using the impact parameter distribution.
- Excluding the POI from the collision centrality definition, serves to reduce the possible self-correlations.

