Constraining nuclear quadrupole deformation in relativistic heavy-ion collisions from a multiphase transport model

Chunjian Zhang

Based on preprints <u>2102.05200</u>, <u>2105.01638</u>, <u>2105.05713</u>

Plenary: Flash-talk (July 14, 2021 12:20 - 12:25)

Connecting the initial state to the nuclear geometry

A. Gorgen, <u>Tech. Rep. 051, 019(2015)</u>

Hartree-Fock-Bogolyubov (Gogny D1S effective interaction)

$$ec{\epsilon}_n \equiv \epsilon_n e^{in\Phi_n^*} \equiv -rac{\left\langle r^n e^{in\phi}
ight
angle}{\left\langle r^n
ight
angle}$$

Hydro-response

$$v_n \propto \epsilon_n, n=2,3$$

Shape and size fluctuation affects v_n and $\langle p_T \rangle$

Study the deformation β_2 effect on $p(v_n)$ and $p(v_n, [p_T])$ in heavy ion collisions.

Constrain the β_2 using $p(v_n)$

- strongly depends β_2 in central collisions.
- $\langle v_3^2 \rangle$ is independent of $oldsymbol{eta_2}$.

Clear geometric effect and the linear β_2 dependence.

Constrain the β_2 using $p(v_n)$

Intrinsic connection between the phenomenology of heavy-ion collisions and the structure of the atomic nuclei.

- A minor role of the hydrodynamic response.
- Numerical results are confirmed.

Constrain the β_2 using $p(v_n, [p_T])$

- v_2 is an even function of β_2 , while $\rho(v_2^2, [p_T])$ isn't.
- Deformation influence collisions from mid-central to central.
- Further confirm the deformation effect with TRENTo and IP-Glasma+MUSIC+UrQMD calculations.
- Comparison with STAR data in future
 STAR talk by Shengli Huang, July 15, 09:10-09:30
 - Double check the volume fluctuations (centrality bias) effect:

 <u>UCC region is a sweet spot.</u>
- Non-flow are negligible in UCC region in HIJNG and PYTHIA study.

New way to constrain β_2 of uranium at a much shorter time scale (~10⁻²³s) in heavy-ion collisions.

Conclusions and Outlooks

- Numerically calculate the intrinsic connection between the phenomenology heavy-ion collisions and the structure of atomic nuclei:
 - Clear geometric effect and the linear β_2 dependence in central collisions.
 - $\langle v_2^2 \rangle$ strongly depends β_2 in central collisions. $\langle v_3^2 \rangle$ is independent of β_2 .
 - $\langle v_2^2 \rangle$ and $\langle \epsilon_2^2 \rangle$ are indeed linear in β_2^2 .
- 2. AMPT β_2 scan could qualitatively describe the STAR Preliminary $\rho(v_2^2, [p_T])$ results.
- 3. A new experimental test to study nuclear shape in heavy-ion collisions.
 - UCC region is an sweet spot.
- 4. Decipher the puzzle of nuclear deformation in Ru and Zr in future.

Many thanks to ISMD2021 conference and also thank you for listening.