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1. Introduction
The goal of heavy ion collision phenomenology is the quanti-

tative understanding of the non-trivial, emergent, many-body dy-
namics of quantum chromodynamics. Viscous, relativistic hydro-
dynamics has proven to be an incredibly valuable tool in this en-
deavor: important statements about the bulk properties of quark-
gluon plasma, such as the equation of state and shear and bulk
viscosities, have been deduced by describing the measured dis-
tribution of low momentum particles (. 2 GeV) emerging from
nuclear collisions [1].

Figure 1: Remarkably successful relativistic viscous hydrody-
namics description of the distribution of low-pT particles in
hadronic collisions from A+A (top) down to even p+p (bottom)
collision systems. (Figure adapted from [1].)

Shockingly, hydrodynamics provides not only an excellent
description for large collision systems such as Au+Au and Pb+Pb,
but also appears to provide a very good description of small col-
lision systems such as central p+p; see Fig. (1). One may then
naturally ask: do input quantities in hydrodynamics such as the
equation of state depend on the size of the system? Turned the
other way around, do the properties of QGP extracted from hy-
drodynamics’ comparison to data depend on the size of the colli-
sion system?
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Figure 2: Finite volume pressure p divided by the infinite vol-
ume, Stefan-Boltzmann limit pSB of a free, massless scalar field
with Dirichlet boundary conditions in 1, 2, and 3 dimensions as
a function of temperature T in units of 1/L, where L is the length
of any of the fixed, compactified directions [2].

2. Analytic Results
A natural first analytic model to test the relevance of sys-

tem size on thermodynamic quantities is the massless, free scalar
field put into a box, i.e. L = 1

2(∂µφ)2 with Dirichlet boundary
conditions (DBCs) in 1, 2, or 3 directions of lengths L1, L2, and
L3, respectively. One may straightforwardly compute the parti-
tion function [2], then from the free energy one may compute
the pressure, energy density, etc. We show in Fig. (2) the finite
system size effect on the pressure as a function of temperature:
the presence of the boundary limits the modes of the field, re-
ducing the pressure from the infinite volume, Stefan-Boltzmann
(SB) limit. As the dimensionless parameter T × L increases, the
finite size effects decrease, as they must. As T × L → 0, the

pressure converges to the T = 0 Casimir pressure. One can see
that the finite size effects are ∼ 10% for even T × L ∼ 20 and
grow as T×L decreases. It’s worth noting that for a p+p collision,
T×L ∼ 20 implies a phenomenologically relevant T ∼ 400 MeV.
One may—provocatively—go further and note how the general
shape of the pressure as a function of temperature in the finite
system is reminiscent of the shape of p(T ) in the infinite volume
limit from lattice QCD simulations [3].

Figure 3: The scaled trace anomaly ∆/T 4 = (ε − 3p)/T 4 as a
function of temperature T from Nf = 0 pQCD to order g5

s with
scale set by πT, 2πT , and 4πT in infinite volume as given in [4]
and then with finite size running coupling Eq. (1).

One may then examine the trace anomaly ∆ ≡ ε − 3p in
this compactified massless free scalar field. One may show that
the trace anomaly in this case is identically 0, independent of any
choice of conformality-breaking non-trivial finite geometry. One
may further see that for a coupled λφ4 theory, the trace anomaly
in infinite volume is identically 0 up to order fixed order λ2; note
that the dynamically generated Debye mass mD ∼ λT impacts
the pressure and energy density at order λ3/2 [5].

The trace anomaly becomes non-zero when the coupling is
allowed to run and when the order of the expansion of the parti-
tion function yields logs of the temperature. Inspired by the finite
size correction to the running coupling in λφ4 theory [6], we took
as an ansatz

gs(µ, L) = gs(µ)− 3

2
g2
s(µ)

3

2

[
(2π)3mD(µ)L

]−1/2 (1)

in the g5
s QCD partition function as given in [4]. We plotted the

results for the scaled trace anomaly ∆/T 4 ≡ (ε − 3p)/T 4 in in-
finite volume and in a box of sides L = 1 fm in Fig. (3). We
conservatively estimated the uncertainty in the result by varying
the scale µ from πT to 4πT . One can see that the reduction in the
coupling from the infinite volume limit due to the finite system
size significantly reduces the trace anomaly, which will lead to a
faster speed of sound.
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Figure 4: (Top) Scaled pressure p/T 4 and (bottom) energy den-
sity ε/T 4 of quenched QCD with periodic boundary conditions
with one side of fixed (small) length L [7].

3. Lattice QCD Results
With the intuition from our analytic calculations in hand, we

may now quantify the finite system size effects on thermodynamic

quantities using the lattice. Quenched QCD pure SU(3) gauge lat-
tice simulations were performed on lattices with anisotropic spa-
tial volumes with periodic boundary conditions (PBCs) [7]. The
energy-momentum tensor defined through the gradient flow was
used for the analysis of the stress tensor on the lattice. We show
in Fig. (4) clear finite-size effects in the pressure and the energy
density. Note that in quenched QCD Tc ≈ 270 MeV. As antic-
ipated from the analytic results, the pressure and energy density
are reduced compared to their infinite volume limit as the dimen-
sionless parameter T × Lx decreases.

We performed additional lattice calculations in quenched
QCD with PBCs to examine the trace anomaly as a function of
the temperature alone [8]. One can see in Fig. (5) that as the sys-
tem size decreases, the phase transition broadens and the trace
anomaly is reduced, as expected from our analytic results.

Figure 5: The scaled trace anomaly ∆/T 4 ≡ (ε − 3p)/T 4 as a
function of temperature T in quenched QCD with periodic bound-
ary conditions with sides Nx = 24 (red),16 (green), 8 (orange)
and 4 (blue) at fixed coupling. The temperature was varied by
changing Nt. [8].

4. Discussion and Conclusions
We showed that for a free, massless scalar field, placing the

system in a finite-sized box reduces the pressure and energy den-
sity as compared to the infinite volume limit. These finite size
effects persist out to surprisingly large T × L ∼ 20. In p+p col-
lisions, T × L ∼ 20 corresponds to a QGP temperature of ∼ 400
MeV, which suggests that finite size effects on the thermodynam-
ics may have non-trivial implications for quantities in these small
systems extracted using hydrodynamics models. We next analyt-
ically examined the finite size effects on the Nf = 0 QCD trace
anomaly, finding that the finite system size reduced the anomaly
compared to the infinite volume limit, suggesting a faster-than-
expected speed of sound. Detailed quenched QCD calculations
with periodic boundary conditions agreed qualitatively with the
analytic results: pressure, energy density, and the trace anomaly
were all reduced compared to their infinite volume limits.

Future work includes rigorously determining the finite size
effects on the running coupling in QCD, implementing Dirichlet
boundary conditions (DBCs) in the lattice simulations [9], and
extending the lattice simulations to full QCD. We anticipate that
both DBCs and the presence of fermions will increase the mag-
nitude of the finite size corrections seen in the lattice results pre-
sented here.
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