Atholl Palace, Pitlochry, Scotland 12-16 July 2021 # First indication on self-similarity of strangeness production in Au+Au collisions at RHIC and critical phenomena in nuclear matter M. Tokarev* & I. Zborovsky** *JINR, Dubna, Russia **NPI, Řež, Czech Republic ## Contents - Introduction - > z-Scaling (ideas, definitions,...) - Properties of data z-presentation - Self-similarity of strange particle production in p+p collisions at RHIC - Self-similarity of K_S⁰ meson production in Au+Au collisions at RHIC - Momentum fractions, recoil mass and constituent energy loss vs. $\sqrt{s_{NN}}$, centrality, p_T - Summary ## Motivation & Goals ## Search for new symmetries in Nature Systematic analysis of inclusive cross sections of particle production in p+p, p+A and A+A collisions to search for general features of hadron and nucleus structure, constituent interaction and fragmentation process over a wide scale range ## z-Scaling is a tool in high energy physics Development of z-scaling approach for description of processes with strange particle production in inclusive reactions and verification of self-similarity principle Analysis of STAR data on K_S^0 meson spectra in Au+Au collisions ## The suggested approach can be used to study - Origin of strangeness - Symmetry of constituent interactions at small scales - \triangleright Similarity and difference of u,d,s,c,b,t quark fragmentation - Strangeness as probe to search for new physics - New phenomena in A+A in comparison with p+p # Fundamental principles and symmetries "Fundamental symmetry principles dictate the basic laws of physics, control the structure of matter, and define the fundamental forces in Nature." Leon M. Lederman Self-similarity is a property of physical phenomena and the principle to construct theories. Flavor is one of mystery property of quarks. ## Special topic: Self-similarity of strangeness production in p+p and A+A # Fundamental principles and symmetries ## Phase transition and critical phenomena in usual matter (gas, liquid, solid) "Scaling" and "Universality" are concepts developed to understanding critical phenomena. Scaling means that systems near the critical points exhibiting self-similar properties are invariant under transformation of a scale. According to universality, quite different systems behave in a remarkably similar fashion near the respective critical points. Critical exponents are defined only by symmetry of interactions and dimension of the space. H.Stanley, G.Barenblatt,... ### Phase transition and critical phenomena in nuclear matter - The idea is to vary the collision energy and look for the signatures of QCD phase boundary and QCD critical point i.e. to span the phase diagram from the top RHIC energy (lower μ_B) to the lowest possible energy (higher μ_B). - To look for the phase boundary, we would study the established signatures of QGP at 200 GeV as a function of beam energy. Turn-off of these signatures at particular energy would suggest the crossing of phase boundary. - Similarly, near critical point, there would be enhanced fluctuations in multiplicity distributions of conserved quantities (net-charge, net-baryon). **STAR** collaboration # Self-similarity A self-similar object is exactly or approximately similar to a part of itself (i.e. the whole has the same shape as one or more of the parts). Self-similarity is a typical property of fractals. Scale invariance is an exact form of self-similarity where at any magnification there is a smaller piece of the object that is similar to the whole. ## Dimensionless dynamical function vs. self-similarity parameter - > Drag force vs. Reynolds number $Re = \rho VD/\eta$ - \triangleright Drag force vs. Mach number Ma= v/c - Structure function F(x) vs. Bjorken variable $x = -q^2/2(pq)$ hydrodynamics aerodynamics deep-inelastic scattering laminar & turbulent flow subsonic & supersonic wave low x & high x # Drag coefficient c_D for a circular sphere in flow S.S.Kutateladze (1986) $$C_D = \frac{F_D}{\rho v^2 d^2}$$ $$Re = \frac{\rho vd}{\eta}$$ The uniform flow passes over the circular cylinder M. Van Dyke (1982) Re = 0.16 Re = 26 Re = 105 Re = 2000 Re = 10000 - > Self-similarity of both, in laminar and turbulent flow - Smooth behavior of transition from the laminar to turbulent flow # Discontinuity of specific heat near a Critical Point #### Specific heat of liquid ⁴He M. J. Buckingham and W. M. Fairbank, 1961 H.E. Stanley, 1971 ## Heat capacity of liquid ³He H. Choi et al., PRL 96, 125301 (2006) - ➤ Near a critical point the singular part of thermodynamic potentials is a Generalized Homogeneous Function (GHF). - ightharpoonup The Gibbs potential $G(\lambda^{a_{\varepsilon}} \varepsilon, \lambda^{a_{p}} p) = \lambda G(\varepsilon, p)$ is GHF of (ε, p) . $$c_p \sim / \epsilon / \alpha$$ $\epsilon \equiv (T - T_c) / T_c$ $c_p = -T(d^2G / dT^2)$ Critical exponents define the behavior of thermodynamic quantities nearby the Critical Point. # Phase transitions & Critical phenomena - ➤ Critical phenomena are unusual phenomena that reveal characteristic behavior of substances in the vicinity of phase transition points. - > They are observed due to an increase in the characteristic sizes of different fluctuations. - In these phenomena, the self-similarity of the system arises spontaneously. This is a scale property that is characteristic for fractal structures. - > Second order transition is accompanied by a spontaneous symmetry breaking. ### Signatures of these phenomena: - increase in compressibility (liquid-vapor equilibrium) - ➤ increase in magnetic and dielectric susceptibility in the vicinity of the Curie points of ferromagnets and ferroelectrics - > anomaly in heat capacity at the point of transition of helium to the superfluid state - > slowing of the mutual diffusion of substances near the critical points of mixtures of stratifying liquids - > anomaly in the propagation of ultrasound (absorption of sound and an increase in its dispersion) - > anomalies in viscosity, thermal conductivity, a slowdown in the establishment of thermal equilibrium, etc. These anomalies are described by power laws with critical indices. Strong fluctuations with an infinite correlation radius appear in systems. # The phase diagram of water H₂O - Self-similarity as a symmetry principle is confirmed - The law of corresponding states, equation of state are found - Phase diagram boundaries, triple and critical points,... is established - Properties of phases are investigated # Self-similarity in inclusive reactions of hadron production in p+p and A+A collisions at high energies # Self-similarity & z-scaling Inclusive cross sections of π^- , K^- , \bar{p} , Λ in pp collisions #### FNAL: PRD 75 (1979) 764 #### ISR: NPB 100 (1975) 237 PLB 64 (1976) 111 NPB 116 (1976) 77 (low p_T) NPB 56 (1973) 333 (small angles) #### STAR: PLB 616 (2005) 8 PLB 637 (2006) 161 PRC 75 (2007) 064901 - > Energy & angular independence - \triangleright Flavor independence $(\pi, K, \bar{p}, \Lambda)$ - \triangleright Saturation for z < 0.1 - ➤ Power law $\Psi(z) \sim z^{-\beta}$ for high z > 4 Energy scan of spectra at U70, ISR, SppS, SPS, HERA, FNAL(fixed target), Tevatron, RHIC, LHC # MT & I.Zborovsky T.Dedovich Phys.Rev.D75,094008(2007) Int.J.Mod.Phys.A24,1417(2009) J. Phys.G: Nucl.Part.Phys. 37,085008(2010) Int.J.Mod.Phys.A27,1250115(2012) J.Mod.Phys.3,815(2012) Int.J.Mod.Phys. A32,1750029(2017) Nucl. Phys. A993 (2020) 121646 Scaling – "collapse" of data points onto a single curve. Universality classes – hadron species (ε_F , α_F). # Self-similarity at RHIC M.T. & I.Zborovský Int.J.Mod.Phys. A24,1417(2009) ## Flavor independence of scaling function π^{-} , ρ , ω , ϕ , K^* , Λ , Ξ , J/ψ STAR: PRL 92 (2004) 092301 PLB 612 (2005) 181 PRC 71 (2005) 064902 PRC 75 (2007) 064901 #### PHENIX: PRC 75 (2007) 051902 - Energy independence - > Angular independence - Flavor independence - \triangleright Saturation for z < 0.01 - Power law $\Psi(z)\sim z^{-\beta}$ at large z - $\epsilon_{\rm F}$, $\alpha_{\rm F}$ independent of $p_{\rm T}$, $s^{1/2}$ Self-similarity of particle production with various flavor content. # Properties of $\Psi(z)$ in p+p collisions - \triangleright Energy independence of $\Psi(z)$ (s^{1/2} > 20 GeV) - Angular independence of $\Psi(z)$ ($\theta_{cms}=3^{\circ}-90^{\circ}$) - Multiplicity independence of $\Psi(z)$ ($dN_{ch}/d\eta=1.5-26$) - \triangleright Saturation of $\Psi(z)$ at low z (z < 0.1) - Power law, Ψ (z) ~z-β, at high z (z > 4) - Flavor independence of $\Psi(z)$ ($\pi, K, \varphi, \Lambda, ..., D, J/\psi, B, \Upsilon, ..., top$) These properties reflect self-similarity, locality, and fractality of hadron interactions at a constituent level. It concerns the structure of the colliding objects, constituent interactions and fragmentation process. # **z**-Scaling: ideas, definitions, hypothesis,... Basic principles: locality, self-similarity, fractality,... # z-Scaling ## Principles: locality, self-similarity, fractality ## Hypothesis of z-scaling: $s^{1/2}$, p_T , θ_{cms} Inclusive particle distributions can be described in terms of constituent sub-processes and parameters characterizing bulk properties of the system. x_1, x_2, y_a, y_b $\delta_1, \delta_2, \varepsilon_a, \varepsilon_b, c$ $Ed^3\sigma/dp^3$ Scaled inclusive cross section of particles depends in a self-similar way on a single scaling variable **z**. $\Psi(z)$ # Locality # Collisions of colliding objects are expressed via interactions of their constituents ### Elementary sub-process: $$(x_1M_1) + (x_2M_2) \rightarrow (m_1/y_a) + (x_1M_1 + x_2M_2 + m_2/y_b)$$ Momentum conservation law for sub-process $$(x_1P_1+x_2P_2-p/y_a)^2 = M_X^2$$ Mass of recoil system $$M_X = x_1 M_1 + x_2 M_2 + m_2 / y_b$$ P_1 , P_2 , p — momenta of colliding and produced particles M_1 , M_2 , m_1 – masses of colliding and produced particles x₁, x₂ – momentum fractions of colliding particles carried by constituents y_a, y_b – momentum fractions of scattered constituents carried by inclusive particle and its recoil δ_1 , δ_2 – fractal dimensions of colliding particles ε_a , ε_b – fractal dimensions of scattered constituents (fragmentation dimensions) m_2 – mass of recoil particle > M.T., I.Zborovský Yu.Panebratsev, G.Skoro Phys.Rev.D54 5548 (1996) Int.J.Mod.Phys.A16 1281 (2001) # Self-similarity ## Interactions of constituents are mutually similar The self-similarity parameter z is a dimensionless quantity, expressed through the dimensional values P_1 , P_2 , p, M_1 , M_2 , m_1 , m_2 , characterizing the process of inclusive particle production $$\mathbf{z} = z_0 \cdot \mathbf{\Omega}^{-1}$$ $$z_0 = \frac{s_{\perp}^{1/2}}{(dN_{ch}/d\eta|_0)^c m_N}$$ - Ω^{-1} is the minimal resolution at which a constituent sub-process can be singled out of the inclusive reaction - > $s_{\perp}^{1/2}$ is the transverse kinetic energy of the sub-process consumed on production of $m_1 \& m_2$ - $\rightarrow dN_{ch}/d\eta|_0$ is the multiplicity density of charged particles at $\eta = 0$ - > c is a parameter interpreted as a "specific heat" of created medium - \triangleright m_N is an arbitrary constant (fixed at the value of nucleon mass) # Fractality ## Self-similarity over a wide scale range #### Fractal measure $$z = z_0 \cdot \Omega^{-1}$$ $$\Omega = (1 - x_1)^{\delta_1} (1 - x_2)^{\delta_2} (1 - y_a)^{\epsilon_a} (1 - y_b)^{\epsilon_b}$$ $$0 < x_1, x_2 < 1$$ $0 < y_a, y_b < 1$ $$0 < y_a, y_b < 1$$ Ω^{-1} (x₁, x₂, y_a, y_b) characterizes resolution at which a constituent subprocess can be singled out of the inclusive reaction The fractal measure z diverges as the resolution Ω^{-1} increases. $$|z(\Omega)|_{\Omega^{-1}\to\infty}\to\infty$$ P_2, M_2, δ_2 Principle of minimal resolution: The momentum fractions x_1 , x_2 and y_a , y_b are determined in a way to minimize the resolution Ω^{-1} of the fractal measure z with respect to all constituent sub-processes taking into account 4-momentum conservation law: #### Momentum conservation law $$(x_1P_1+x_2P_2-p/y_a)^2 = M_X^2$$ $$\begin{cases} \left. \partial \Omega / \partial x_1 \right|_{y_a = y_a(x_1, x_2, y_b)} = 0 \\ \left. \partial \Omega / \partial x_2 \right|_{y_a = y_a(x_1, x_2, y_b)} = 0 \\ \left. \partial \Omega / \partial y_b \right|_{y_a = y_a(x_1, x_2, y_b)} = 0 \end{cases}$$ ## Resolution of sub-process $$\Omega^{-1} = (1 - x_1)^{-\delta_1} (1 - x_2)^{-\delta_2} (1 - y_a)^{-\epsilon_a} (1 - y_b)^{-\epsilon_b}$$ Mass of recoil system $M_X = x_1 M_1 + x_2 M_2 + m_2/y_b$ Fractions x_1 , x_2 , y_a , y_b are expressed via Lorentz invariants – scalar products of 4-D momenta and particle masses. # Scaling function $\Psi(z)$ ## Normalization condition $$\int_{0}^{\infty} \Psi(z) dz = 1$$ ## Scale transformation $$z \to \alpha_F \cdot z \qquad \Psi \to \alpha_F^{-1} \cdot \Psi$$ preserves the normalization condition $$\Psi(z) = \frac{\pi}{(dN/d \eta) \cdot \sigma_{inel}} \cdot J^{-1} \cdot E \frac{d^3 \sigma}{dp^3}$$ $$\int E \frac{d^3 \sigma}{dp^3} dy d^2 p_{\perp} = \sigma_{\text{inel}} \cdot \langle N \rangle$$ - \triangleright σ_{in} the inelastic cross section - <N> the average multiplicity - \rightarrow dN/d η the multiplicity density - $ightharpoonup J(z,\eta;p_T^2,y)$ the Jacobian - ightharpoonup Ed³ σ /dp³ the inclusive cross section The scaling function $\Psi(z)$ is a probability density to produce the inclusive particle with the corresponding z. # Strange particle production in p+p from RHIC p+p @ RHIC **PH*ENIX** $K_S^0, K^-, K^*, \phi, \Lambda, \Xi, \Omega, \Sigma^*, \Lambda^*$ p+p is a benchmark for strangeness production in A+A collisions M.T.& I.Zborovský Int.J.Mod.Phys. A32,1750029(2017) # Self-similarity of strangeness production in p+p ## Universality: flavor independence of the scaling function M.T.& I.Zborovský Int.J.Mod.Phys. A24,1417(2009) Solid line for π^- meson is a reference frame $$\varepsilon_{\pi} = 0.2, \quad \alpha_{\pi} = 1$$ #### STAR: PRL 92 (2004) 092301 PRL 97 (2006) 132301 PLB 612 (2005) 181 PRC 71 (2005) 064902 PRC 75 (2007) 064901 PRL 108 (2012) 072302 #### PHENIX: PRC 75 (2007) 051902 PRD 83 (2011) 052004 PRC 90 (2014) 054905 - Energy independence - > Angular independence - > Flavor independence - \triangleright Saturation for z < 0.01 - Power law $\Psi(z)\sim z^{-\beta}$ at large z - \triangleright $\epsilon_{\rm F}$, $\alpha_{\rm F}$ independent of $p_{\rm T}$, $s^{1/2}$ # Self-similarity of strangeness production in p+p $$K_S^0, K^-, K^*, \phi, \Lambda, \Xi, \Omega, \Sigma^*, \Lambda^*$$ ## Constituent sub-process in terms of #### Momentum fraction The more strangeness, the larger momentum fraction $$x_1^{\Omega} > x_1^{\Xi} > x_1^{\Sigma} > x_1^{K}$$ #### Recoil mass The more strangeness, the larger recoil mass $$M_X^\Omega > M_X^\Xi > M_X^\Sigma > M_X^K$$ ## Energy loss $\Delta E/E \sim (1-y_a)$ The more strangeness, the larger energy loss $$\varepsilon_{\Omega} > \varepsilon_{\Xi} > \varepsilon_{\Sigma} > \varepsilon_{K}$$ Self-similarity dictates the properties of constituent sub-process. # Self-similarity of K_S^0 production in p+p ### Self-similarity parameter $$z = z_0 \Omega^{-1}$$ $$z_0 = \frac{s_{\perp}^{1/2}}{(dN_{ch}/d\eta|_0)^c m_N}$$ $$\Omega = (1 - x_1)^{\delta} (1 - x_2)^{\delta} (1 - y_a)^{\epsilon_F} (1 - y_b)^{\epsilon_F}$$ - \rightarrow $dN_{ch}/d\eta|_0$ multiplicity density - > c "specific heat" of bulk matter - \triangleright δ proton fractal dimension - \triangleright ϵ_F fragmentation fractal dimension ## Scaling function $$\Psi(z) = \frac{\pi}{(dN/d\eta) \cdot \sigma_{inel}} \cdot J^{-1} \cdot E \frac{d^3 \sigma}{dp^3}$$ #### "Collapse" of data onto a single curve - \triangleright Energy independence of $\Psi(z)$ - \triangleright Centrality independence of $\Psi(z)$ - Power law at high z - > Saturation at low z Universality: the same shape of Ψ both for K_S^0 and π^- (solid line) # Self-similarity of K_S^0 production in p+p ## Constituent sub-process in terms of #### Momentum fraction - \triangleright increases with p_T - \triangleright decreases with $\sqrt[7]{s_{NN}}$ #### Recoil mass - \triangleright increases with p_T - \rightarrow increases with $\sqrt[7]{s_{NN}}$ ### Constituent energy loss - \triangleright decreases with p_T - \rightarrow increases with $\sqrt{s_{NN}}$ - \rightarrow High x_1 and $p_T \rightarrow$ compressed matter - \triangleright Large $M_X \rightarrow$ high density recoil system - \rightarrow High $y_a \rightarrow$ small energy loss, pure signatures of PT & CP # Model parameters: δ , ε_F , c Parameters δ , ϵ_F , c are found from the scaling behavior of Ψ as a function of self-similarity variable z Proton fractal dimension Fragmentation dimension "Specific heat" - \triangleright δ, ε_F, c are independent of \sqrt{s} , p_T - \triangleright $\epsilon_{\rm F}$ depends on flavor A discontinuity and strong correlation of the model parameters could give indication on new physics in p+p collisions: Search for signatures of phase transition, critical point with strange probes. Au+Au @ BES-I $K_S^0, K^-, K^*, \phi, \Lambda, \Xi, \Omega, \Sigma^*, \Lambda^*$ J. Adam et al. (STAR Collaboration) Phys. Rev. C 102 (2020) 034909 # Self-similarity of K_S^0 production in Au+Au ## Self-similarity parameter $$z = z_0 \Omega^{-1}$$ $$z_0 = \frac{s_{\perp}^{1/2}}{(dN_{ch}/d\eta |_0)^c m_N}$$ $$\Omega = (1 - x_1)^{\delta_{A_1}} (1 - x_2)^{\delta_{A_2}} (1 - y_a)^{\varepsilon} (1 - y_b)^{\varepsilon}$$ - \rightarrow $dN_{ch}/d\eta|_0$ multiplicity density - > c_{AA} "specific heat" of bulk matter - \triangleright δ_A nucleus fractal dimension - \triangleright ϵ_{AA} fragmentation dimension #### AA collisions: $$\delta_A = A\delta$$ $$\epsilon_{AA} = \epsilon_0 (dN_{AA}/d\eta) + \epsilon_{pp}$$ $$\Psi(z) = \frac{\pi}{(dN/d\eta) \sigma_{inel}} J^{-1} E \frac{d^3 \sigma}{d p^3}$$ M.T. & I.Zborovsky, Nucl. Phys. A993 (2020) 121646 ## "Collapse" of data points onto a single curve - \triangleright Energy independence of $\Psi(z)$ - \triangleright Centrality independence of $\Psi(z)$ - \triangleright Dependence of ε_{AA} on multiplicity - ➤ Power law at low- and high-z regions Indication of a decrease of δ for $\sqrt{s_{NN}} < 19.6 \text{ GeV}$ # K_s⁰ production in Au+Au @ 7.7 GeV ## Constituent sub-process in terms of #### Momentum fraction Ax₁ #### Momentum fraction - \triangleright increases with p_T - \rightarrow decreases with $\sqrt{s_{NN}}$ \rightarrow increases with $\sqrt{s_{NN}}$ #### Recoil mass M_x #### Recoil mass - \triangleright increases with p_T - increases with centralitydecreases with centrality #### Energy loss $\Delta E/E \sim (1-y_a)$ #### Energy loss - \triangleright decreases with p_T - \triangleright increases with $\sqrt{s_{NN}}$ - increases with centrality - \rightarrow High x_1 and $p_T \rightarrow$ compressed matter - \triangleright Large $M_X \rightarrow$ high density recoil system - \rightarrow High $y_a \rightarrow$ small energy loss, pure signatures of PT & CP # K_S⁰ production in Au+Au @ 200 GeV ## Constituent sub-process in terms of #### Momentum fraction Ax₁ #### Momentum fraction - \triangleright increases with p_T - \triangleright decreases with $\sqrt{s_{NN}}$ - increases with centrality #### Recoil mass M_X #### Recoil mass - \triangleright increases with p_T - \triangleright increases with $\sqrt{s_{NN}}$ - > decreases with centrality #### Energy loss $\Delta E/E \sim (1-y_a)$ #### Energy loss - \triangleright decreases with p_T - \triangleright increases with $\sqrt{s_{NN}}$ - increases with centrality - \rightarrow High x_1 and $p_T \rightarrow$ compressed matter - \triangleright Large $M_X \rightarrow$ high density recoil system - \rightarrow High $y_a \rightarrow$ small energy loss, pure signatures of PT & CP # Self-similarity of K_S^0 production in Au+Au ## Self-similarity parameter $$z = z_0 \Omega^{-1}$$ $$z_0 = \frac{s_{\perp}^{1/2}}{(dN_{ch}/d\eta |_0)^c m_N}$$ $$\Omega = (1 - x_1)^{\delta_{A_1}} (1 - x_2)^{\delta_{A_2}} (1 - y_a)^{\varepsilon} (1 - y_b)^{\varepsilon}$$ - \rightarrow $dN_{ch}/d\eta|_0$ multiplicity density - > c_{AA} "specific heat" of bulk matter - \triangleright δ_A nucleus fractal dimension - \succ ϵ_{AA} fragmentation dimension #### AA collisions: $$\delta_A = A\delta$$ $$\epsilon_{AA} = \epsilon_0 (dN_{AA}/d\eta) + \epsilon_{pp}$$ $$\Psi(z) = \frac{\pi}{(dN/d\eta) \sigma_{inel}} J^{-1} E \frac{d^3 \sigma}{dp^3}$$ M.T. & I.Zborovsky, Nucl. Phys. A993 (2020) 121646 "Collapse" of data points onto a single curve - \triangleright Energy independence of $\Psi(z)$ - \triangleright Centrality independence of $\Psi(z)$ - \triangleright Dependence of ε_{AA} on multiplicity - Power law at low- and high-z regions Indication of a decrease of δ for $\sqrt{s_{NN}} < 19.6 \text{ GeV}$ # K_s⁰ production in central Au+Au @ 7.7-200 GeV ## Constituent sub-process in terms of #### Momentum fraction Ax₁ #### Momentum fraction - \triangleright increases with p_T - \triangleright decreases with $\sqrt{s_{NN}}$ #### Recoil mass M_x #### Recoil mass - \triangleright increases with p_T - \triangleright increases with $\sqrt{s_{NN}}$ #### Energy loss $\Delta E/E \sim (1-y_a)$ ## Energy loss - \triangleright decreases with p_T - \rightarrow increases with $\sqrt{s_{NN}}$ - \rightarrow High x_1 and $p_T \rightarrow$ compressed nuclear matter - ightharpoonup Large $M_X \rightarrow$ high density recoil system - \rightarrow High $y_a \rightarrow$ small energy loss, pure signatures of PT & CP # Summary & Outlook - > STAR BES-I data on transverse momentum spectra of K_S^0 mesons produced in Au+Au collisions at RHIC in mid-rapidity region were analyzed in the z-scaling approach. - \triangleright Self-similarity of strange K_S^0 meson production in Au+Au collisions over a wide kinematical and centrality range was found. - Constituent energy loss as a function of collision energy and centrality, and transverse momentum of K_S^0 meson was estimated. - Model parameters fractal dimensions and "specific heat", were found. - The method of analysis is extended for systematical description of A+A collisions with production of identified hadrons. Specific features of constituent sub-process with strange particles found in the z-scaling approach can be sensitive to critical phenomena in Strange Quark Matter created in A+A collisions.