

50th International Symposium on Multiparticle Dynamics (ISMD 2021)

P_c in Molecular Picture

Kanokphon Phumphan

Working with: Wiriya Ruangyoo, Chia-Chu Chen, Ayut Limphirat, Yupeng Yan

July 2021

School of Physics, Suranaree University of Technology, Thailand Department of Physics, National Cheng Kung University, Taiwan

Hidden-charm pentaquark P_c

P_c states	Γ [MeV]	State	E [MeV]
$P_c(4312)$	$9.8 \pm 2.7^{+3.5}_{-4.5}$	$\Sigma_c^+ \overline{D}{}^0, \frac{1}{2}^-$	5
$P_c(4440)$	$20.6 \pm 4.9^{+8.7}_{-10.1}$	$\Sigma_c^+ \overline{D}^{*0}, \frac{1}{2}^-$	20
$P_c(4457)$	$6.4 \pm 2.0^{+5.7}_{-1.9}$	$\Sigma_c^+ \overline{D}^{*0}, \frac{3}{2}^-$	2

- $\Lambda_b^0 \to P_c K^- \to pJ/\psi K^-$
- Minimal quark content: $uudc\bar{c}$
- Quark model framework
- Strong decay study

Wave function construction

- **ISMD**2021
- In this work, The hidden-charm pentaquark is in the molecule state of charmed baryon and anticharm meson, $[qqc][q\bar{c}]$.
- The wave function of the pentaguark follows:
 - > The total wave function of the pentaguark should be color singlet.

$$\psi^{c}_{[222]}(qqcqar{c})=$$

There are 3 possible configurations of the baryon-meson molecule for the color singlet [222].

The explicit wave function can be calculated by

$$\psi^{c}_{[222]}(qqcq\bar{c}) = \psi^{c}_{[111]}(qqc) \otimes \psi^{c}_{[111]}(q\bar{c}) \qquad \psi^{c}_{[222]}(qqcq\bar{c}) = \frac{1}{\sqrt{8}} \sum_{i} \psi^{c}_{[21]_{j,i}}(qqc) \otimes \psi^{c}_{[21]_{i}}(q\bar{c})$$

> The wave function should be antisymmetric for the light quark separately by each cluster.

Baryon and meson clusters wave function &

ISMD2021

• The total wave function, which has four degrees of freedom, color ψ , spatial η , flavor ϕ , and spin χ , of the baryon cluster should be antisymmetric for the light quark q in the cluster.

$$\begin{array}{c} \psi_{[111]}(\phi_{[2]} \otimes \phi(c))\chi_{[3]} \\ \psi_{[111]}(\phi_{[2]} \otimes \phi(c))\chi_{[21]_{\lambda}} \\ \psi_{[111]}(\phi_{[11]} \otimes \phi(c))\chi_{[21]_{\rho}} \\ \psi_{[21]_{\lambda}}(\phi_{[11]} \otimes \phi(c))\chi_{[3]} \\ \psi_{[21]_{\lambda}}(\phi_{[11]} \otimes \phi(c))\chi_{[21]_{\lambda}} \\ \psi_{[21]_{\lambda}}(\phi_{[2]} \otimes \phi(c))\chi_{[21]_{\rho}} \\ \psi_{[21]_{\rho}}(\phi_{[2]} \otimes \phi(c))\chi_{[3]} \\ \psi_{[21]_{\rho}}(\phi_{[2]} \otimes \phi(c))\chi_{[21]_{\rho}} \\ \psi_{[21]_{\rho}}(\phi_{[2]} \otimes \phi(c))\chi_{[21]_{\lambda}} \\ \psi_{[21]_{\rho}}(\phi_{[11]} \otimes \phi(c))\chi_{[21]_{\rho}} \end{array}$$

The possible configurations for the baryon cluster in the ground state $(\eta_{3}(qqc))$.

$$\psi_{[111]}\phi(q\bar{c})\chi_{[2]} \ \psi_{[111]}\phi(q\bar{c})\chi_{[11]} \ \psi_{[21]}\phi(q\bar{c})\chi_{[2]} \ \psi_{[21]}\phi(q\bar{c})\chi_{[11]}$$

The possible configurations for the meson cluster in the ground state $(\eta_{\lceil 2 \rceil}(q\bar{c}))$.

Total wave function

Pentaquark configuration	$\Psi(q^2c)$	\otimes	$\Psi(qar{c})$	Isospin	Spin
$\Psi_{[111]_C[2]_F[3][2]_S}$	$\psi_{[111]}\phi_{[2]}\chi_{[3]}$	\otimes	$\psi_{[111]}\phi(qar{c})\chi_{[2]}$	$\frac{3}{2}, \frac{1}{2}$	$\frac{5}{2}, \frac{3}{2}, \frac{1}{2}$
$\Psi_{[111]_C[2]_F[3][11]_S}$	$\psi_{[111]}\phi_{[2]}\chi_{[3]}$	\otimes	$\psi_{[111]}\phi(qar{c})\chi_{[11]}$	$\frac{3}{2}, \frac{1}{2}$	$\frac{3}{2}$
$\Psi_{[111]_C[2]_F[21][2]_S}$	$\psi_{[111]}\phi_{[2]}\chi_{[21]_{\pmb{\lambda}}}$	\otimes	$\psi_{[111]}\phi(qar{c})\chi_{[2]}$	$\frac{3}{2},\frac{1}{2}$	$\frac{3}{2}, \frac{1}{2}$
$\Psi_{[111]_C[2]_F[21][11]_S}$	$\psi_{[111]}\phi_{[2]}\chi_{[21]_{\lambda}}$	\otimes	$\psi_{[111]}\phi(qar{c})\chi_{[11]}$	$\frac{3}{2}, \frac{1}{2}$	$\frac{1}{2}$ $\frac{3}{2}, \frac{1}{2}$
$\Psi_{[111]_C[11]_F[21][2]_S}$	$\psi_{[111]}\phi_{[11]}\chi_{[21]_{ ho}}$	\otimes	$\psi_{[111]}\phi(qar{c})\chi_{[2]}$	$\frac{1}{2}$	$\frac{3}{2}, \frac{1}{2}$
$\Psi_{[111]_C[11]_F[21][11]_S}$	$\psi_{[111]}\phi_{[11]}\chi_{[21]_{ ho}}$	\otimes	$\psi_{[111]}\phi(qar{c})\chi_{[11]}$	$\frac{1}{2}$	$\frac{1}{2}$
$\Psi_{[21]_C^{\lambda}[2]_F[21]^{ ho}[2]_S}$	$\psi_{[21]_{\lambda}}\phi_{[2]}\chi_{[21]_{ ho}}$	\otimes	$\psi_{[21]}\phi(qar{c})\chi_{[2]}$	$\frac{3}{2}, \frac{1}{2}$	$\frac{3}{2}, \frac{1}{2}$
$\Psi_{[21]_C^{\lambda}[2]_F[21]^{ ho}[11]_S}$	$\psi_{[21]_{\lambda}}\phi_{[2]}\chi_{[21]_{\rho}}$	\otimes	$\psi_{[21]}\phi(qar{c})\chi_{[11]}$	$\frac{3}{2}, \frac{1}{2}$	$\frac{1}{2}$
$\Psi_{[21]_C^{\lambda}[11]_F[3][2]_S}$	$\psi_{[21]_{\lambda}}\phi_{[11]}\chi_{[3]}$	\otimes	$\psi_{[21]}\phi(qar{c})\chi_{[2]}$	$\frac{1}{2}$	$\frac{5}{2}, \frac{3}{2}, \frac{1}{2}$
$\Psi_{[21]_C^{\lambda}[11]_F[3][11]_S}$	$\psi_{[21]_{\lambda}}\phi_{[11]}\chi_{[3]}$	\otimes	$\psi_{[21]}\phi(qar{c})\chi_{[11]}$	$\frac{1}{2}$	$\frac{3}{2}$
$\Psi_{[21]_C^{\lambda}[11]_F[21]^{\lambda}[2]_S}$	$\psi_{[21]_{\lambda}}\phi_{[11]}\chi_{[21]_{\lambda}}$	\otimes	$\psi_{[21]}\phi(qar{c})\chi_{[2]}$	$\frac{1}{2}$	$\frac{3}{2}, \frac{1}{2}$
$\Psi_{[21]_C^{\lambda}[11]_F[21]^{\lambda}[11]_S}$	$\psi_{[21]_{\lambda}}\phi_{[11]}\chi_{[21]_{\lambda}}$	\otimes	$\psi_{[21]}\phi(qar{c})\chi_{[11]}$	$\frac{1}{2}$	$\frac{1}{2}$
$\Psi_{[21]_C^{\rho}[2]_F[3][2]_S}$	$\psi_{[21]_{m{ ho}}}\phi_{[2]}\chi_{[3]}$	\otimes	$\psi_{[21]}\phi(qar{c})\chi_{[2]}$	$\frac{3}{2}, \frac{1}{2}$	$\frac{5}{2}, \frac{3}{2}, \frac{1}{2}$
$\Psi_{[21]_C^{ ho}[2]_F[3][11]_S}$	$\psi_{[21]_{m{ ho}}}\phi_{[2]}\chi_{[3]}$	\otimes	$\psi_{[21]}\phi(qar{c})\chi_{[11]}$	$\frac{3}{2}, \frac{1}{2}$	$\frac{3}{2}$
$\Psi_{[21]_C^{ ho}[2]_F[21]^{\lambda}[2]_S}$	$\psi_{[21]_{m{ ho}}}\phi_{[2]}\chi_{[21]_{m{\lambda}}}$	\otimes	$\psi_{[21]}\phi(qar{c})\chi_{[2]}$	$\frac{3}{2}, \frac{1}{2}$	$\frac{3}{2}, \frac{1}{2}$
$\Psi_{[21]_C^{ ho}[2]_F[21]^{\lambda}[11]_S}$	$\psi_{[21]_{\rho}}\phi_{[2]}\chi_{[21]_{\lambda}}$	\otimes	$\psi_{[21]}\phi(qar{c})\chi_{[11]}$	$\frac{3}{2}, \frac{1}{2}$	$\frac{1}{2}$
$\Psi_{[21]_C^{ ho}[11]_F[21]^{ ho}[2]_S}$	$\psi_{[21]_{\rho}}\phi_{[11]}\chi_{[21]_{\rho}}$	\otimes	$\psi_{[21]}\phi(qar{c})\chi_{[2]}$	$\frac{1}{2}$	$\frac{3}{2}, \frac{1}{2}$
$\Psi_{[21]_C^{ ho}[11]_F[21]^{ ho}[11]_S}$	$\psi_{[21]_{\rho}}\phi_{[11]}\chi_{[21]_{\rho}}$	\otimes	$\psi_{[21]}\phi(qar{c})\chi_{[11]}$	$\frac{1}{2}$	$\frac{1}{2}$

Strong decay study

• The decay width formula for two-body decay, factorizing by the transition amplitudes of the spatial part and color-spin-flavor part, is given by

$$\Gamma_{p_c \to ij} = \frac{2\pi E_i E_j}{M_{P_c}} f(p^2) |\gamma_{CSF}|^2.$$

p is the center-of-mass momentum, $E_{i(j)}$ is the energy of the final particle i.

- $f(p^2)$ is the kinematic phase space factor stemming from the transition amplitude of the spatial part.
- To reduce the model dependence, we apply a phenomenological form for the phase factor from [2],

$$f(m_i, m_j, \sqrt{s}) = p \cdot Cexp\left(-A(s - s_{ij})^{\frac{1}{2}}\right).$$

C and A are constant, assuming to be equal for all decay channels, which $A=-1.2~GeV^{-1}$, and $s_{ij}=\left(m_i+m_j\right)^{1/2}$.

• γ_{CSF} is the color-spin-flavor transition amplitude which is calculated from the overlap of the color-spin-flavor part of the initial and final states.

Decay width ratios

- By using three P_c masses, we find the decay width for all the possible decay channels normalized by $\Gamma(\Psi_{[111]_C[2]_F[3][2]_S}^{J=3/2} \to pJ/\psi) \text{mode}.$
- Due to the result of three P_c are in the same magnitude, we present only the result from the P_c (4457) for I = 1/2.

_							
J	P_c configuration	$p\eta_c$	pJ/ψ	$\Sigma_c^* \bar{D}$	$\Sigma_c \bar{D}$	$\Lambda_c^+ \bar{D}$	$\Lambda_c^+ \bar{D}^*$
	$\Psi_{[111]_C[2]_F[3][2]_S}$		1				
	$\Psi_{[111]_C[2]_F[3][11]_S}$		0.59	69.63			
	$\Psi_{[111]_C[2]_F[21][2]_S}$		0.19				
$\frac{3}{2}$	$\Psi_{[111]_C[11]_F[21][2]_S}$		1.80				66.71
	$\Psi_{[21]_C^{ ho}[2]_F[3][2]_S}$		8.00				
	$\Psi_{[21]_C^{\rho}[2]_F[3][11]_S}$		4.80				
	$\Psi_{[21]_C^{\rho}[2]_F[21]^{\lambda}[2]_S}$		1.59				
	$\Psi_{[21]_C^{\rho}[11]_F[21]^{\rho}[2]_S}$		14.40				
	$\Psi_{[111]_C[2]_F[3][2]_S}$	1.07	0.39				
	$\Psi_{[111]_C[2]_F[21][2]_S}$	0.13	1.25				
	$\Psi_{[111]_C[2]_F[21][11]_S}$	0.40	0.14		67.51		
1	$\Psi_{[111]_C[11]_F[21][2]_S}$	1.21	0.44				66.71
$\frac{1}{2}$	$\Psi_{[111]_C[11]_F[21][11]_S}$	0.40	1.34			53.94	
	$\Psi_{[21]_C^{ ho}[2]_F[3][2]_S}$	8.63	3.20				
	$\Psi_{[21]_C^{\rho}[2]_F[21]^{\lambda}[2]_S}$	1.09	10.00				
	$\Psi_{[21]_C^{\rho}[2]_F[21]^{\lambda}[11]_S}$	3.23	1.19				
	$\Psi_{[21]_C^{\rho}[11]_F[21]^{\rho}[2]_S}$	9.71	3.60				
	$\Psi_{[21]_C^{\rho}[11]_F[21]^{\rho}[11]_S}$	3.23	10.80				

Summary

- We study the hidden charm pentaquark in the molecule picture of charmed baryon and anticharm meson within the quark model framework.
- The wave functions are constructed by applying the group theory. We find all the possible ground-state configurations for the pentaquark in the molecule state totally 18 configurations, 47 states.
- The strong decay of each possible molecule states were investigated for all possible channels.
- Due to the color transition amplitude, the states with the color octet λ of the baryon cluster cannot strongly decay.
- The decay width ratios show that five open-charm decay modes are dominant over the hidden-charm decay channels. $p\eta_c$, $\Sigma_c\overline{D}$, and $\Lambda_c^+\overline{D}$ channels are open only J=1/2 while $\Sigma_c^*\overline{D}$ channel is open only J=3/2 except for $P_c(4312)$.
- We strongly suggest that the spin of P_c can be determined in experiment by investigating the $p\eta_c$ and the open-charm decay channels.

Appendix: Color octet wave function

$$\psi_{[21]_{\lambda}}(q^{2}c)_{1} = \frac{1}{\sqrt{6}}(2rrg - rgr - grr), \qquad \psi_{[21]_{\rho}}(q^{2}c)_{1} = \frac{1}{\sqrt{2}}(rgr - grr),$$

$$\psi_{[21]_{\lambda}}(q^{2}c)_{2} = \frac{1}{\sqrt{6}}(grg + rgg - 2ggr), \qquad \psi_{[21]_{\rho}}(q^{2}c)_{2} = \frac{1}{\sqrt{2}}(rgg - grg),$$

$$\psi_{[21]_{\lambda}}(q^{2}c)_{3} = \frac{1}{\sqrt{6}}(2rrb - rbr - brr), \qquad \psi_{[21]_{\rho}}(q^{2}c)_{3} = \frac{1}{\sqrt{2}}(rbr - brr),$$

$$\psi_{[21]_{\lambda}}(q^{2}c)_{4} = \frac{1}{\sqrt{12}}(2rgb + 2grb - gbr \qquad \psi_{[21]_{\rho}}(q^{2}c)_{4} = \frac{1}{\sqrt{4}}(gbr + rng - brg - brg - brg),$$

$$\psi_{[21]_{\lambda}}(q^{2}c)_{5} = \frac{1}{\sqrt{6}}(2ggb - gbg - bgg),$$

$$\psi_{[21]_{\lambda}}(q^{2}c)_{6} = \frac{1}{\sqrt{6}}(brb + rbb - 2bbr),$$

$$\psi_{[21]_{\lambda}}(q^{2}c)_{7} = \frac{1}{\sqrt{6}}(bgb + gbb - 2bbg),$$

$$\psi_{[21]_{\lambda}}(q^{2}c)_{8} = \frac{1}{\sqrt{4}}(rbg + brg - bgr - gbr).$$

$$\psi_{[21]_{\rho}}(q^{2}c)_{8} = \frac{1}{\sqrt{12}}(2rgb - 2grb - gbr + rbg - brg + bgr).$$

$$\psi_{[21]_{\rho}}(q^{2}c)_{1} = \frac{1}{\sqrt{2}}(rgr - grr),$$

$$\psi_{[21]_{\rho}}(q^{2}c)_{2} = \frac{1}{\sqrt{2}}(rgg - grg), \qquad \psi_{[21]}(q\bar{c})_{1} = b\bar{r},$$

$$\psi_{[21]_{\rho}}(q^{2}c)_{3} = \frac{1}{\sqrt{2}}(rbr - brr), \qquad \psi_{[21]}(q\bar{c})_{3} = -g\bar{r},$$

$$\psi_{[21]_{\rho}}(q^{2}c)_{4} = \frac{1}{\sqrt{4}}(gbr + rng - brg - bgr) \qquad \psi_{[21]}(q\bar{c})_{4} = \frac{1}{\sqrt{2}}(r\bar{r} - g\bar{g}),$$

$$\psi_{[21]_{\rho}}(q^{2}c)_{5} = \frac{1}{\sqrt{2}}(gbg - bgg), \qquad \psi_{[21]}(q\bar{c})_{5} = r\bar{g},$$

$$\psi_{[21]_{\rho}}(q^{2}c)_{6} = \frac{1}{\sqrt{2}}(rbb - brb), \qquad \psi_{[21]}(q\bar{c})_{7} = r\bar{b},$$

$$\psi_{[21]_{\rho}}(q^{2}c)_{7} = \frac{1}{\sqrt{2}}(gbb - bgb), \qquad \psi_{[21]}(q\bar{c})_{8} = \frac{1}{\sqrt{6}}(2b\bar{b} - r\bar{r} - g\bar{g}).$$

$$r). \psi_{[21]_{\rho}}(q^{2}c)_{8} = \frac{1}{\sqrt{12}}(2rgb - 2grb - gbr)$$

+ rbg - brg + bgr).

Appendix: γ_{CSF}

I	j	P_c configuration	NJ/ψ	$N\eta_c$	$\Delta^+ J/\psi$	$\Delta^+ \eta_c$	$\Sigma_c^* \bar{D}^*$	$\Sigma_c \bar{D}^*$	$\Lambda_c^+ ar{D}^*$	$\Sigma_c^* \bar{D}$	$\Sigma_c \bar{D}$	$\Lambda_c^+ \bar{D}$
$\frac{3}{2}$	$\frac{5}{2}$	$\Psi_{[111]_C[2]_F[3][2]_S}$			$\frac{\frac{1}{3}}{\frac{2\sqrt{2}}{3}}$		1					
		$\Psi_{[21]_C^{\rho}[2]_F[3][2]_S}$			$\frac{2\sqrt{2}}{3}$							
$\frac{3}{2}$	$\frac{3}{2}$	$\Psi_{[111]_C[2]_F[3][2]_S}$			$\frac{\frac{1}{18}}{\frac{\sqrt{5}}{9}}$	$\frac{1}{6}\sqrt{\frac{5}{3}}$	1					
		$\Psi_{[111]_C[2]_F[21][2]_S}$			$\frac{\sqrt{5}}{9}$	$-\frac{1}{3\sqrt{3}}$		1				
		$\Psi_{[111]_C[2]_F[3][11]_S}$			$\frac{1}{6}\sqrt{\frac{5}{3}}$	$\frac{1}{6}$				1		
		$\Psi_{[21]_C^{\rho}[2]_F[3][2]_S}$			$\frac{\sqrt{2}}{9}$	$\frac{1}{3}\sqrt{\frac{10}{3}}$						
		$\Psi_{[21]_C^{\rho}[2]_F[3][11]_S}$			$\frac{1}{3}\sqrt{\frac{10}{3}}$	$\frac{\sqrt{2}}{6}$						
		$\Psi_{[21]_C^{\rho}[2]_F[21][2]_S}$			$\frac{2\sqrt{10}}{9}$	$-rac{2}{6}\sqrt{rac{2}{3}}$						
$\frac{3}{2}$	$\frac{1}{2}$	$\Psi_{[111]_C[2]_F[3][2]_S}$			$-\frac{1}{9}$ $\frac{\sqrt{2}}{9}$		1					
		$\Psi_{[111]_C[2]_F[21][2]_S}$			$\frac{\sqrt{2}}{9}$			1				
		$\Psi_{[111]_C[2]_F[21][11]_S}$			$ \frac{1}{3}\sqrt{\frac{2}{3}} $ $ -\frac{2\sqrt{2}}{9} $						1	
		$\Psi_{[21]_C^{ ho}[2]_F[3][2]_S}$			$-\frac{2\sqrt{2}}{9}$							
		$\Psi_{[21]_C^{ ho}[2]_F[21][11]_S}$			$\frac{\frac{4}{3\sqrt{3}}}{\frac{4}{9}}$							
		$\Psi_{[21]_C^{\rho}[2]_F[21][2]_S}$			$\frac{4}{9}$							

Appendix: γ_{CSF}

Ι	j	P_c configuration	NJ/ψ	$N\eta_c$	$\Delta^+ J/\psi$	$\Delta^+ \eta_c$	$\Sigma_c^* \bar{D}^*$	$\Sigma_c \bar{D}^*$	$\Lambda_c^+ \bar{D}^*$	$\Sigma_c^* \bar{D}$	$\Sigma_c \bar{D}$	$\Lambda_c^+ \bar{D}$
$\frac{1}{2}$	$\frac{5}{2}$	$\Psi_{[111]_C[2]_F[3][2]_S}$					1					
$\frac{1}{2}$	$\frac{3}{2}$	$\Psi_{[111]_C[2]_F[3][2]_S}$	$\frac{1}{9}\sqrt{\frac{5}{2}}$				1					
		$\Psi_{[111]_C[2]_F[21][2]_S}$	$\frac{1}{9\sqrt{2}}$					1				
		$\Psi_{[111]_C[11]_F[21][2]_S}$	$\frac{1}{3\sqrt{2}}$						1			
		$\Psi_{[111]_C[2]_F[3][11]_S}$	$-\frac{1}{3\sqrt{6}}$ $\frac{2\sqrt{5}}{9}$							1		
		$\Psi_{[21]_C^{\rho}[2]_F[3][2]_S}$	$\frac{2\sqrt{5}}{9}$									
		$\Psi_{[21]_C^{\rho}[2]_F[3][11]_S}$	$-\frac{2}{3\sqrt{3}}$ $\frac{2}{9}$									
		$\Psi_{[21]_C^{\rho}[2]_F[21]^{\lambda}[2]_S}$	$\frac{2}{9}$									
		$\Psi_{[21]_C^{\rho}[11]_F[21]^{\rho}[2]_S}$	$\frac{2}{3}$									
$\frac{1}{2}$	$\frac{1}{2}$	$\Psi_{[111]_C[2]_F[3][2]_S}$	$\frac{1}{9}$	$\frac{1}{3\sqrt{3}}$			1					
		$\Psi_{[111]_C[2]_F[21][2]_S}$	$\frac{5}{18\sqrt{2}}$	$-\frac{1}{6\sqrt{6}}$				1				
		$\Psi_{[111]_C[11]_F[21][2]_S}$	$-\frac{1}{6\sqrt{2}}$	$\frac{1}{2\sqrt{6}}$					1			
		$\Psi_{[111]_C[2]_F[21][11]_S}$	$-\frac{1}{6\sqrt{6}}$	$\frac{1}{6\sqrt{2}}$							1	
		$\Psi_{[111]_C[11]_F[21][11]_S}$	$\frac{\frac{1}{2\sqrt{6}}}{\frac{2\sqrt{2}}{9}}$	$\frac{1}{6\sqrt{2}}$								1
		$\Psi_{[21]_C^{\rho}[2]_F[3][2]_S}$	$\frac{2\sqrt{2}}{9}$	$\frac{\frac{1}{6\sqrt{2}}}{\frac{2}{3}\sqrt{\frac{2}{3}}}$								
		$\Psi_{[21]_C^{\rho}[2]_F[21]^{\lambda}[2]_S}$	$\frac{5}{9}$	$-\frac{1}{3\sqrt{3}}$								
		$\Psi_{[21]_C^{\rho}[2]_F[21]^{\lambda}[11]_S}$	$-\frac{1}{3\sqrt{3}}\\-\frac{1}{3}$	$\frac{1}{3}$								
		$\Psi_{[21]_C^{\rho}[11]_F[21]^{\rho}[2]_S}$	$-\frac{1}{3}$	$\frac{\frac{1}{\sqrt{3}}}{\frac{1}{3}}$								
		$\Psi_{[21]_C^{\rho}[11]_F[21]^{\rho}[11]_S}$	$\frac{1}{\sqrt{3}}$	$\frac{1}{3}$							Activate Go to Setti	Windov ngs to activ