

HOW TO DISCOVER QCD INSTANTONS AT THE LHC

ISMD2021

JUL. 13TH, 2021

SIMONE AMOROSO (DESY), D. KAR, AND M. SCHOTT

INTRODUCTION

* Yang-Mills theories have a topologically non-trivial vacuum, and admit "tunnelling" solutions across different vacua which cannot be obtained through perturbation theory

- These "Instanton" solutions were first discovered by t'Hooft in the 70s, and are related to many low energy properties of QCD: chiral symmetry breaking, confinement, ...
- * Never been directly observed experimentally, can we search for them at the LHC?

QCD INSTANTONS AT COLLIDERS

An Instanton transition should give rise to $2N_f$ fermion pairs of different chiralities, and an additional number of gluons N_f

$$g+g \rightarrow n_g \times g + \sum_{f=1}^{N_f} (q_{Rf} + \bar{q}_{Lf})$$

- * At colliders, interested in small-size (high-energy) Instantons
- First searched for in ep collisions at HERA in the late 90s https://arxiv.org/abs/hep-ph/9609445
- Very recently predictions for pp collisions became available https://arxiv.org/abs/1911.09726
- CERN-Th workshop last December https://indico.cern.ch/event/965112/

LOW-MASS SEARCH

- At low masses ($m_l < 100 \text{ GeV}$), cross-sections are very large
 - Even the highly prescaled MBTS triggers should give sensitivity
 - But signal cross-section is also very uncertain at low masses
- Expect a high multiplicity of low energetic partons, a **soft bomb**
 - Large number of tracks and spherically symmetric events
 - Background dominated by soft QCD processes, hard to simulate reliably
 - A signal selection can be based on the track multiplicity, event shapes and displaced vertices (c-/b-hadrons)

HIGH-MASS SEARCH

- At higher masses (m_I > 100 GeV) the Instanton cross-sections are o(pb) and high p_T jets can be reconstructed
 - Dominant backgrounds from multi-jets and top production calculable in perturbative QCD
 - A dedicated signal selection can achieve a signal/bkg. ~ 1
- * Triggering is however a challenge.
 - Might benefit from dedicated low-p_T multi jet (topological?) triggers or dedicated runs to collect enough statistics

https://arxiv.org/abs/2012.09120 5

CONCLUSIONS

- The discovery of QCD Instanton induced processes would confirm of one of the last unobserved predictions of the SM
- * A certain breakthrough in our understanding of the theory
- * LHC can already search for Instanton processes
 - A low mass search can reach sensitivity for the predicted crosssection, limited by our understanding of soft QCD models
 - High mass needs dedicated triggers/runs to collect enough statistics
- * For a convincing discovery more sophisticated approaches are needed to unambiguously characterise the candidate events
 - Particle composition (expect more strange, heavy-flavor)
 - Per-event chirality imbalance to measure chirality violation

BACKUP

EXPECTED REACH

[2012.09120]

- * We can now derive the expected 95% upper limits on the Instanton
 - With 1 pb-1 can exclude there nominal cross-section up to 150 GeV
 - Reach~250 GeV and > 400 GeV with 100 pb⁻¹ and 10 fb⁻¹
- Interesting limits even if the cross-sections are only valid to within a couple order of magnitudes

CAN WE TUNE THE INSTANTON AWAY?

Figure 19. Predicted distribution of the event thrust of the Monash softQCD tune of Pythia8 as well as a modified version with significantly enhanced multiple parton interaction probability (MPI:AlphaSvalue = 0.150) in comparison to the measurement at 13 TeV of the ATLAS Collaboration [50]

Figure 20. Predicted distribution of the charged particle spectrum vs. η of the Monash softQCD tune of Pythia8 as well as a modified version with significantly enhanced multiple parton interaction probability (MPI:AlphaSvalue = 0.150) in comparison to the measurement at 7 TeV of the ATLAS Collaboration [48]

- Modelling of soft QCD processes relies on models fitted to data
 - Could this procedure have fitted the Instanton away?
- * Simple test within Pythia of trying to reproduce a more Instanton like configuration. Possible but not describing data anymore
- * More thorough tests obviously welcome

RECASTING EXISTING DATA

- * ATLAS 13 TeV measurement of charged particles in Minimum Bias events
 - Track pT requirement of 100 MeV
- Nch/Nevt prediction depends on the total cross-section models
- * But the η dependence is consistently well described
- We have seen the Instanton would predict a much more central distribution for this observable
- * Can we already constrain Instanton production using this data?

A FIRST LIMIT

- We have passed our Pythia8 and Instanton signal events through the Rivet implementation of the analysis selection
- st Signal added to the softQCD background with a scaling factor μ
 - Background uncertainty from comparison of Pythia/H7/Sherpa
 - Signal uncertainty from comparison of Sherpa/H7
- * Scaling fitted to data to derive a 95% CL limit

[2012.09120]

- Different correlation assumed for the bkg
- * For a $\sigma = 71 \mu b^{-1}$ and a signal efficiency of ~90%, exclude cross-sections:

 σ_I < 2.1 - 6.4 mb

[2012.09120]

SEARCH STRATEGIES

- The soft QCD regime (20 <m_I< 40 GeV and 40 <m_I< 80 GeV)
 - Very large signal cross-sections, but approaching the regime where cross-sections might not be anymore reliable
 - Background dominated by soft QCD, described by phenomenological models fitted to data with large uncertainties
 - Two regions to exploit the different fall-off of the cross-section for Instantons and softQCD as a function of mass
- * The hard QCD regime (200 GeV <m_I< 300 GeV)
 - Instanton cross-sections are much smaller, and events hard to trigger but events look more striking
 - Background dominated by (perturbative) QCD jet production Known to NNLO, uncertainties at the level of several percent
- * The top-quark regime (300 GeV <m_I< 500 GeV)
 - In this high mass regime can also try to find regions dominated by top-quark pair production.
 - Can use semi-/dileptonic decays in data as control regions

SIGNAL SIMULATION

- Relies on the process implementation in Sherpa [1911.09726]
 - Partonic cross-sections from tabulated calculation
 - Minimal $\sqrt{s'}$ fixes the factorisation scale $\mu_F=1/\rho$
 - Instanton decay products consist of $q\bar{q}$ pairs as long as:
 - Quark mass smaller than partonic energy
 - Total Instanton mass smaller than partonic energy
 - An additional Poisson distributed number of gluons is added as long as total mass is below the parsonic energy
 - Particles are decayed isotropically in their rest frame and boosted back to the lab frame
- Likely ignores dependence of the active flavours on the instanton size/partonic energy
- Implementation in Herwig7 exists, but lacking partonic crosssection dependence

JET OBSERVABLES

TRACK OBSERVABLES

PARTICLE COMPOSITION

- we should expect a different particle composition of the instanton events
 - We see a somewhat larger fraction of strange, charm and bottom particles in Instanton events than in QCD
 - Also larger number of displaced tracks, similar to the expectation for ttbar production (b-quarks?)

TRIGGERS

* Instanton cross-section is large, but events not easy to trigger

Jet triggers

- Single jet trigger: p_T>500 GeV -> no way
- Multijet triggers: $p_T > 100 \text{ GeV} -> \text{still too high thresholds}$ topological selections could help (i.e. event shapes)?
- Can lower the rate by prescaling, but significantly reduces the collected statistics (factors 10 - 1000)

* Leptons

Leptons from semileptonic B/C-hadrons? -> too soft

Minimum Bias triggers

- Only require a few high-p_T tracks -> high acceptance
- Typically used for monitoring and luminosity measurements
- Very high prescales, will only get small fraction of total lumi

ATLAS TRIGGERS

SIGNAL SIMULATION

- Relies on the process implementation in Sherpa [1911.09726]
 - Partonic cross-sections from tabulated calculation
 - Minimal $\sqrt{s'}$ fixes the factorisation scale $\mu_F=1/\rho$
 - Instanton decay products consist of $q\bar{q}$ pairs as long as:
 - Quark mass smaller than partonic energy
 - Total Instanton mass smaller than partonic energy
 - An additional Poisson distributed number of gluons is added as long as total mass is below the parsonic energy
 - Particles are decayed isotropically in their rest frame and boosted back to the lab frame
- Likely ignores dependence of the active flavours on the instanton size/partonic energy
- Implementation in Herwig7 exists, but lacking partonic crosssection dependence

JET OBSERVABLES

TRACK OBSERVABLES

PARTICLE COMPOSITION

- we should expect a different particle composition of the instanton events
 - We see a somewhat larger fraction of strange, charm and bottom particles in Instanton events than in QCD
 - Also larger number of displaced tracks, similar to the expectation for ttbar production (b-quarks?)

TRIGGERS

* Instanton cross-section is large, but events not easy to trigger

Jet triggers

- Single jet trigger: p_T>500 GeV -> no way
- Multijet triggers: $p_T > 100 \text{ GeV} -> \text{still too high thresholds}$ topological selections could help (i.e. event shapes)?
- Can lower the rate by prescaling, but significantly reduces the collected statistics (factors 10 - 1000)

* Leptons

Leptons from semileptonic B/C-hadrons? -> too soft

Minimum Bias triggers

- Only require a few high-p_T tracks -> high acceptance
- Typically used for monitoring and luminosity measurements
- Very high prescales, will only get small fraction of total lumi

ATLAS TRIGGERS

