

Study of kinematic dependence of azimuthal anisotropies in $p/d/^3$ He+Au collisions at PHENIX

Collectivity in small collision systems at RHIC

PHENIX published elliptic and triangular flow of charged particles in asymmetric collisions of different projectiles (p, d, 3 He) at 200 GeV

1 1.5 2 p_{_}(GeV/c)

1 1.5 2 p_(GeV/c)

 $t = 1.7 \text{ fm } c^{-1}$ $t = 3.2 \text{ fm } c^{-1}$ $t = 4.5 \text{ fm } c^{-1}$

Phys. Rev. Lett. 113, 112301 (2014) Phys. Rev. C 95, 014906 (2017)

Model of initial-state correlation does not describe the data: flow magnitude/system dependence

Phys. Rev. Lett. 113, 112301 (2014)

Flow measurement at PHENIX

- Flow of charged particles at mid-rapidity (CNT, $|\eta|$ <0.35)
- Event plane (EP) method (published in Nature Physics)
 - EP is measured with BBCS or FVTXS (Au-going direction)
 - EP resolution is determined with the three-subevent method (CNT-FVTXS-BBCS)
- Non-flow contribution is estimated with CNT-BBCS correlation in p+p collisions scaled with the ratio of multiplicity at BBCS

Two-particle correlation (2PC) method (new results)

Three sets of 2PC are used

- FVTXS/BBCS and FVTXS/FVTXN combinations are used for A/B
- Non-flow subtraction is not applied
 - → Possibility of non-closure of non-flow subtraction methods at RHIC energy *Phys. Rev. C 100, 024908 (2019)*

Results with the two-particle correlation method

CNT-FVTXS-BBCS combination

- Independent analysis with 3x2PC method
- Different sensitivity to beam conditions (angle and offset) and detector alignment
- Consistent v_2 and v_3 results in all three collision systems between two different methods (EP and 3X2PC)
 - → Verify the published results!

Comparison with different kinematic ranges

2.5 p_T (GeV/c)

CNT-FVTXS-FVTXN combination

- →Expect stronger non-flow effects due to smaller flow in p/d/³He-going direction
- Higher v₂ than results with the CNT-FVTXS-BBCS combination
- Larger difference in higher p_T and smaller collision system
- →Stronger non-flow effects
 Similar v₂ with the STAR preliminary results (no non-flow subtraction)
- Imaginary v_3 values in p/d+Au from negative c_3 coefficient where real v_3 is small
- Consistent v₃ in ³He+Au between two combinations
- PHENIX paper with these new results will be submitted in this week!