PDF4LHC2021 Benchmarking

Thomas Cridge

University College London

12th July 2021

On behalf of PDF4LHC21 Combination Group ISMD21 Meeting

*Longer recorded talk available for those interested!

Introduction - PDF Landscape

- PDF4LHC15 was a 1 year benchmarking exercise of the CT14,
 MMHT14, NNPDF3.0 PDFs which resulted in a combination set.
- It has now been more than 5 years since the PDF4LHC15 benchmarking exercise.
- Increasing amounts of data coming out of the LHC, greater precision, more channels, more differential ⇒ changes in PDFs.
- Many theoretical improvements ⇒ full NNLO predictions, methodological improvements (parameterisations, algorithms, etc).
- PDFs now known more accurately and precisely than ever before, but some differences emerging ⇒ benchmarking needed.
- We consider 3 global PDF fits most recent sets, which include much of the recent datasets: MSHT20, CT18, NNPDF3.1.

Work undertaken through many useful discussions, many thanks to all members involved.

PDF Benchmarking: Aim and Approach

- Desire to understand origin of differences:
 - ► Are they due to variations of experimental input, different theory settings, methodologies? Are these equally valid choices?
- Seek to remove as many differences in input/approach as possible:
 - ▶ Common input data Small subset of datasets ⇒ reduced fits.
 - Common theory settings wherever possible.
 - Examine methodological differences in parallel as much as possible.
- Reduced fits offer ease of comparison at expense of robustness.
- To benchmark the reduced fits:
 - ► Compare PDFs directly to look for areas of difference.
 - Compare χ^2 to determine particular datasets showing differences.
 - ► Compare cross-sections and point-by-point theory predictions.
- Once differences in reduced fits understood, slowly add datasets moving towards global fits, focusing on key areas of differences.
- End result: PDF4LHC21 set of PDFs, central PDFs and Hessian error set (30-50 sufficient) representing the 3 published PDFs.

Reduced Fits: CT18 reduced fit vs CT18A global fit

Current Status:

- Good compatibility with change in high x gluon shape and some increase in \bar{u} . Some changes in flavour decomposition.
- Some increase in *nominal* PDF uncertainties, particularly at low x.

Reduced Fits PDF Comparison - central values

• Current Status:

- Good general agreement within uncertainties, perhaps with the exception of high x flavour decomposition of NNPDF.
- Nonetheless, strangeness and flavour decomposition improved through benchmarking (NuTeV - later). *Note this is without the tt̄ added.

Reduced Fits PDF Comparison - uncertainties

• Current Status:

- Similar size uncertainties in data regions, MSHT generally larger errors where constraints lacking in reduced fit.
- Parallel study into differences in uncertainty bands ongoing. *Note this is without the $t\bar{t}$ added.

Reduced Fits Datasets χ^2 Comparison

Current status:

ID	Expt.	N_{pt}	χ^2/N_{pt} (CT)	χ^2/N_{pt} (MSHT)	χ^2/N_{pt} (NNPDF)
101	BCDMS F_2^p	$329/163^{\dagger\dagger}/325^{\dagger}$	1.06	1.00	1.21
102	BCDMS F_2^d	$246/151^{\dagger\dagger}/244^{\dagger}$	1.06	0.88	1.10
104	NMC F_2^d/\bar{F}_2^p	$118/117^{\dagger}$	0.93	0.93	0.90
124 + 125	NuTeV $\nu\mu\mu + \bar{\nu}\mu\mu$	38 + 33	0.79	0.83	1.22
160	HERAI+II	1120	1.23	1.20	1.22
203	E866 $\sigma_{pd}/(2\sigma_{pp})$	15	1.24	0.80	0.43
245 + 250	LHCb 7TeV& 8TeV W,Z	29 + 30	1.15	1.17	1.44
246	LHCb 8TeV $Z \rightarrow ee$	17	1.35	1.43	1.57
248	ATLAS 7TeV $W,Z(2016)$	34	1.96	1.79	2.33
260	D0 Z rapidity	28	0.56	0.58	0.62
267	CMS 7TeV eletron A_{ch}	11	1.47	1.52	0.76
269	ATLAS 7TeV $W,Z(2011)$	30	1.03	0.93	1.01
545	CMS 8TeV incl. jet	$185/174^{\dagger\dagger}$	1.03	1.39	1.30
Total	N_{pt}	_	2263	1991	2256
Total	χ^2/N_{pt}	_	1.14	1.15	1.20

- Similar overall quality of fit in χ^2/N .
- Differences remaining in some datasets:
 - ▶ NuTeV agreement improved but difference remains, seen in $s + \bar{s}$.
 - ► Some differences in NNPDF fit quality to small datasets, e.g. CMS 7 TeV electron asymmetry.

Table from T. Hobbs

Flavour Decomposition - Strangeness and NuTeV

- One of the main differences between the first reduced sets was in the flavour decomposition and strangeness.
- NuTeV dimuon data key driver of this, requires BR(c hadrons $\rightarrow \mu$).
- BR($c \rightarrow \mu$) anti-correlated with total strangeness, 3 groups have different default values:
 - ▶ NNPDF 0.087 ± 0.005
 - ▶ MSHT 0.092 ± 0.01 variable.
 - CT 0.099, normalisation uncertainty.

- Choose same BR fixed at 0.092 ⇒ better strangeness agreement, largely within uncertainties between all 3 groups.
- Also aids reduction in flavour decomposition differences.

High x gluon - jets and top

- High x gluon of interest to both reduced and global fits.
- Jet, top, Zp_T data, different pulls:
- Not straightforward to fit:
 - Difficulties fitting all bins.
 - ▶ Possible tensions.
 - Issue of correlated systematics.
- MSHT, CT, NNPDF differences in relative importance and fit quality.

ATLAS 8 TeV multi-differential $t\bar{t}$ lepton+jets - m_{tt} , y_t , y_{tt} , p_t^T .

 Weights and tensions with other datasets notably affect fit quality, removing these differences ⇒ similar behaviour can be observed.

Dataset	MSHT reduced	MSHT reduced (CMS8j,	NNPDF reduced	MSHT reduced	MSHT reduced	MSHT reduced
(N)	(default CMS8j)	double weight $t\bar{t}$)	(default CMS8j)	(CMS7j)	(AT7j)	(no jets)
χ^2/N	1.15	1.15	1.20	1.11	1.17	1.12
ρ_t^T (8)	3.8	4.2	7.2	4.0	4.6	4.5
y _t (5)	8.4	5.8	4.3	6.4	5.5	5.2
y _{tt} (5)	12.5	7.4	5.7	7.2	5.2	6.6
m _{tt} (7)	6.4	6.5	2.4	6.4	6.4	7.4
tt̄ total	31.2	23.9	19.6	24.0	21.6	23.8

Reduced Fits: Current Status Summary*

- Very good agreement in gluon-gluon, quark-quark and quark-gluon luminosities. (Latter two in backup slides).
- Small difference in quark-antiquark luminosity, still some flavour decomposition differences, although within MSHT uncertainties.
 *Note this is without the t\overline{t} added.

Conclusions and Future Work

- New data, theoretical improvements, PDF methodological improvements have meant substantial changes since PDF4LHC15.
- We have been performing a benchmarking exercise of the 3 global fit PDF groups most recent sets: MSHT20, CT18, NNPDF3.1.
- Based on comparing "Reduced Fits" ⇒ very good consistency is now observed between the three groups, particularly in luminosities.
- Sources of differences in reduced fit strangeness largely identified.
- Currently analysing high x gluon region of interest, effects of dataset tensions and weights investigated.
- Overall very good progress towards benchmarking the global fits.
- End result: PDF4LHC21 set of PDFs, central PDFs and Hessian error set (30-50 sufficient) representing the 3 published PDFs.

Many thanks to all those involved in this work/discussions, special thanks to T. Hobbs, T.-J. Hou, L. Harland-Lang, P. Nadolsky, E. Nocera, J. Rojo, R. Thorne for providing tables/plots/fits.

Backup Slides

Introduction - New Datasets (MSHT20)

	Data set	Points	NLO χ^2/N_{pts}	NNLO χ^2/N_{pts}
111Cb 14/ 7 Jan at	DØ W asymmetry	14	0.94 (2.53)	0.86 (14.7)
LHCb W, Z data at	$\sigma_{t\bar{t}}$ [93] - [94]	17	1.34 (1.39)	0.85 (0.87)
high rapidity —	, LHCb 7+8 TeV W + Z [95,96]	67	1.71 (2.35)	1.48 (1.55)
ingli rapialty	LHCb 8 TeV $Z \rightarrow ee$ 97	17	2.29(2.89)	1.54 (1.78)
	CMS 8 TeV W 98	22	1.05(1.79)	0.58(1.30)
CMS W+c	\longrightarrow CMS 7 TeV $W + c$ 99	10	0.82(0.85)	0.86 (0.84)
CIVIS VV+C	ATLAS 7 TeV jets $R = 0.6$ [18]	140	1.62(1.59)	1.59(1.68)
	ATLAS 7 TeV $W + Z$ [20]	61	5.00 (7.62)	1.91 (5.58)
	CMS 7 TeV jets $R = 0.7$ 100	158	1.27(1.32)	1.11 (1.17)
Precision DY data /	ATLAS 8 TeV $Z p_T$ [75]	104	2.26(2.31)	1.81 (1.59)
Treeloion B. data	CMS 8 TeV jets $R = 0.7$ [101]	174	1.64(1.73)	1.50 (1.59)
	ATLAS 8 TeV $t\bar{t} \rightarrow l + j \text{ sd} \boxed{102}$	25	1.56(1.50)	1.02 (1.15)
⇒ Flavour 🛚 🕅	ATLAS 8 TeV $t\bar{t} \to l^+l^- \text{ sd } 103$	5	0.94 (0.82)	0.68 (1.11)
/ 121021	ATLAS 8 TeV high-mass DY 73	48	1.79(1.99)	1.18 (1.26)
Decomposition /	ATLAS 8 TeV W^+W^- + jets 104	30	1.13(1.13)	$0.60 \ (0.57)$
' /	CMS 8 TeV $(d\sigma_{\bar{t}t}/dp_{T,t}dy_t)/\sigma_{\bar{t}t}$ 105	15	2.19(2.20)	1.50 (1.48)
/	ATLAS 8 TeV W+W- 106	22	3.85(13.9)	2.61 (5.25)
LHC Jet, Zp_T , $t\bar{t}$ —	CMS 2.76 TeV jets 107	81	1.53 (1.59)	1.27 (1.39)
Life jet, Zp_1 , tt	\checkmark CMS 8 TeV $\sigma_{\bar{t}t}/dy_t$ 108	9	1.43 (1.02)	1.47 (2.14)
data	ATLAS 8 TeV double differential Z [74]	59	2.67 (3.26)	1.45 (5.16)
	Total, LHC data in MSHT20	1328	1.79 (2.18)	1.33 (1.77)
\Rightarrow High x gluon	Total, non-LHC data in MSHT20	3035	1.13 (1.18)	1.10 (1.18)
5 6	Total, all data	4363	1.33 (1.48)	1.17 (1.36)

• Lots of new information constraining PDFs.

MSHT20, 2012.04684

Introduction - Changes in PDFs: MSHT20

• Notable changes in strangeness (ATLAS W, Z data), down valence (new data and parameterisation), gluon (new jets, top, Zp_T data).

More details in R. Thorne's MSHT20 talk.

Effect of new LHC data in MSHT20

Main effect on details of flavour, i.e. d_V shape, increase in strange quark for 0.001 < x < 0.3 and \bar{d}, \bar{u} details, though also partially from parameterisation change. Decrease in high-x gluon. *MSHT20 2012.04684.

Slide from R. Thorne

Introduction - Changes in PDFs

Plots from I • Reduction in PDF uncertainties seen across all 3 groups. Harland-Lang

 Central value agreement not as good, some differences emerging. Note: CT18A shown for ease of comparison, however CT18 is the default set.

Introduction - Changes in PDFs

N.B. Different baseline for ratio in two plots and different colours.

- Central value spread effects gluon-gluon luminosity.
- If these were to be combined à la PDF4LHC15, there will be some contribution to uncertainty from spread as well as the uncertainties.
- Motivates understanding these differences and their origin
 ⇒ PDF4LHC21 benchmarking.
- New PDFs CT18, MSHT20, NNPDF3.1 ⇒ now is a good time to undertake a benchmarking exercise, ahead of new ⇒ PDF4LHC21 combination - feedback on what is ultimately provided is welcome!

PDF Benchmarking: Datasets

- Chosen subset of datasets fit by all 3 groups in (almost) the same way, list is surprisingly small! Small reduced fit set.
- Take most conservative cuts applied by any group for consistency.
- Ensure enough datasets and a sufficient variety of dataset types are fit to have some (but incomplete) constraints on all PDF flavours.

Overall list:

- NMC deuteron to proton ratio in DIS.
- NuTeV dimuon cross-sections.
- ► HERA I+II inclusive cross-sections from DIS.
- ► E866 fixed target Drell-Yan ratio pd/pp data.
- ▶ D0 Z rapidity distribution.
- ▶ ATLAS W, Z 7 TeV rapidity distribution, only Z peak and central.
- CMS 7 TeV W asymmetry.
- ► CMS 8 TeV inclusive jet data.
- ▶ LHCb 7, 8 TeV W, Z rapidity distributions.
- ▶ BCDMS proton and deuteron DIS data.

PDF Benchmarking: Theory Settings

- Choose common theory settings for simplicity:
 - Same heavy quark masses ($m_c = 1.4 \text{GeV}$, $m_b = 4.75 \text{GeV}$) and $\alpha_S(M_Z^2) = 0.118$.
 - ▶ No strangeness asymmetry at input scale: $(s \bar{s})(Q_0) = 0$.
 - Perturbative charm.
 - Positive definite quark distributions (lack of constraint may allow negative fluctuations).
 - No deuteron or nuclear corrections.
 - Fixed branching ratio for charm hadrons to muons.
 - NNLO corrections for dimuon data.
- Note: These are not the chosen settings for any one group, but rather are a compromise to the least common denominator in each case, we would not recommend them for a full global fit.

Reduced Fits: CT18 changes - central values

Current Status:

• Good compatibility with change in high x gluon shape and some increase in \bar{u} . Some changes in flavour decomposition.

Reduced Fits: CT18 changes - uncertainties

Current Status:

• Some increase in *nominal* PDF uncertainties, particularly at low x.

Reduced Fits: NNPDF3.1 changes - central values

Current Status:

 Good compatibility, changes in strangeness (see later) and change in large x gluon (removal of top data, addition of CMS 8 TeV jet).

Reduced Fits: NNPDF3.1 changes - uncertainties

Current Status:

• Generally slightly increased uncertainties, particularly for the gluon.

Reduced Fits: MSHT20 changes - central values

Current Status:

 Good compatibility, changes in strangeness (removal of 8 TeV ATLAS W, Z data), flavour decomposition and large x gluon.

Reduced Fits: MSHT20 changes - uncertainties

Current Status:

• General marked increase in uncertainties of reduced fit, particularly outside of regions where there are data.

PDF4LHC15 in Predictions Datasets χ^2 Comparison

- First make predictions with PDF4LHC15 PDFs, identifies any differences in theory/data between groups with fixed PDFs.
- Current status:

Table from T. Hobbs

ID	Expt.	N_{pt}	χ^2/N_{pt} (CT)	χ^2/N_{pt} (MSHT)	χ^2/N_{pt} (NNPDF)
101	BCDMS F_2^p	$329/163^{\dagger\dagger}/325^{\dagger}$	1.35	1.2	1.51
102	BCDMS F_2^d	$246/151^{\dagger\dagger}/244^{\dagger}$	0.97	1.27	1.24
104	NMC F_2^d/F_2^p	$118/117^{\dagger}$	0.92	0.93	0.94
124+125	NuTeV $\nu\mu\mu + \bar{\nu}\mu\mu$	38+33	0.75	0.73	0.84
160	HERAI+II	1120	1.27	1.24	1.74
203	E866 $\sigma_{pd}/(2\sigma_{pp})$	15	0.45	0.54	0.59
245 + 250	LHCb 7TeV& 8TeV W,Z	29+30	1.5	1.34	1.76
246	LHCb 8TeV $Z \rightarrow ee$	17	1.35	1.65	1.25
248	ATLAS 7TeV $W,Z(2016)$	34	6.71	7.46	6.51
260	D0 Z rapidity	28	0.61	0.58	0.61
267	CMS 7TeV eletron A_{ch}	11	0.45	0.5	0.73
269	ATLAS 7TeV $W,Z(2011)$	30	1.21	1.23	1.31
545	CMS 8TeV incl. jet	$185/174^{\dagger\dagger}$	1.53	1.89	1.78
Total	N_{pt}	_	2263	1991	2256
Total	χ^2/N_{pt}	_	1.31	1.36	1.62

- Similar overall quality of fit for MSHT and CT in χ^2/N , NNPDF significantly larger χ^2/N .
- Differences in some datasets:
 - ▶ Difference in NNPDF HERA χ^2 flavour scheme, disappears in fit.

Flavour Decomposition - Strangeness and NuTeV

- One of the main differences between the first reduced sets was in the flavour decomposition and strangeness.
- NuTeV dimuon data key driver of this, complicated dataset:
 - ightharpoonup Requires knowledge of charm \rightarrow hadrons branching ratio (BR).
 - ▶ Non-isoscalar nature of target.
 - ▶ Prefers non-zero strangeness asymmetry.
 - ► Acceptance corrections required.
- BR($c \rightarrow \mu$) anti-correlated with total strangeness, 3 groups have different default values:
 - NNPDF 0.087 ± 0.005
 - ▶ MSHT 0.092 ± 0.01 variable.
 - ► CT 0.099, normalisation uncertainty.
- MSHT20 reduced fit v^2/N :

Dataset /BR	0.086	0.092	0.099				
NuTeV Dimuon	58.8/71	49.6/71	68.5/71				
ATLAS 7 TeV W. Z	60.8/34	65.1/34	57.1/34				

Flavour Decomposition - Strangeness and NuTeV

- Setting all variables the same in all 3 fits same Dimuon BR fixed at 0.092, all treat non-isoscalarity, same acceptance corrections.
- NNPDF strangeness reduced as expected, CT strangeness increases.

- Better strangeness agreement, certainly in data region, now largely within uncertainties between all 3 groups.
- Also aids reduction in flavour decomposition differences.

High x gluon - jets and top

- High x gluon of interest to both reduced and global fits.
- 3 main dataset types jet data, top data, Zp_T data, different pulls:
- Not straightforward to fit:
 - Difficulties fitting all bins.
 - Possible tensions.
 - Issue of correlated systematics.

 MSHT, CT, NNPDF observe differences in the relative importance of these datasets and the quality of their individual fits

ATLAS 8 TeV multi-differential $t\bar{t}$ lepton+jets - m_{tt} , y_t , y_{tt} , p_t^T .

- Several groups have had difficulties fitting this data, either together (MSHT, CT) or y_t or y_{tt} individually (MSHT, CT, ATLAS).
- NNPDF3.0 however able to fit all 4 distributions well individually.

ATLAS 8 TeV multi-differential $t\bar{t}$ lepton+jets

- Start by adding this to the reduced fit, first check theory predictions for PDF4LHC15 read in (no fitting):
 - ▶ Data agree and theory agrees to better than 1%.
 - ▶ All groups χ^2 in agreement and follow same pattern:

Distribution/N	MSHT	CT	NNPDF
$p_t^T/8$	3.0	3.1	3.4
y _t /5	10.6	10.1	9.5
y _{tt} /5	17.6	15.3	16.2
m _{tt} /7	4.3	4.2	4.1

- ▶ Differences in global fits likely not from $t\bar{t}$ theory implementations.
- Weights and tensions with other datasets notably affect fit quality, removing these differences ⇒ similar behaviour can be observed.

Dataset	MSHT reduced	MSHT reduced (CMS8j,	NNPDF reduced	MSHT reduced	MSHT reduced	MSHT reduced
(N)	(default CMS8j)	double weight $t\bar{t}$)	(default CMS8j)	(CMS7j)	(AT7j)	(no jets)
χ^2/N	1.15	1.15	1.20	1.11	1.17	1.12
p_t^T (8)	3.8	4.2	7.2	4.0	4.6	4.5
y _t (5)	8.4	5.8	4.3	6.4	5.5	5.2
y _{tt} (5)	12.5	7.4	5.7	7.2	5.2	6.6
m _{tt} (7)	6.4	6.5	2.4	6.4	6.4	7.4
$t\bar{t}$ total	31.2	23.9	19.6	24.0	21.6	23.8

Benchmarking ATLAS 8 TeV $t\bar{t}$ lepton+jets

- What happens when this dataset is added to the reduced fits?
- Two cases considered "uncorrelated" (all systematic and statistical correlations between distributions turned off) and "correlated" (including all correlations, produces a very poor fit):

Distribution/N	$p_t^T/8$	$y_t/5$	$y_{tt}/5$	m _{tt} /7	Total
MSHT uncorrelated	3.8	8.4	12.5	6.4	31.2
NNPDF uncorrelated	7.2	3.9	5.1	2.5	18.7
CT uncorrelated	3.4	12.9	17.3	6.1	39.7
MSHT correlated	-	-	-	-	130.6
NNPDF correlated	-	-	-	-	122.7
MSHT decorrelated	-	-	-	-	35.3

- MSHT observe usual pattern as in global fits, p_t^T and m_{tt} can be fit but y_t , y_{tt} struggle, although better than in full fit. Awful fit if all correlations included, can fit with parton shower decorrelation.
- CT see usual global fit pattern also, poor fits to rapidities y_t , y_{tt} .
- NNPDF however able to fit rapidity distributions in uncorrelated case, yet correlated case similar to MSHT.

Benchmarking ATLAS 8 TeV $t\bar{t}$ lepton+jets

Preliminary!

- Potential explanation division of training and validation in NNPDF.
- Training fraction usually 50%, for small datasets this is unfeasible all data in training.
- Potentially double-weights small datasets - e.g. ATLAS tt̄.
- Affects balance of p_t^T , m_{tt} and y_t , y_{tt} , which have some tension.

Dataset	MSHT uncorrelated	NNPDF uncorrelated	MSHT uncorrelated double weight
Total	2314.1	2731.4	2313.3
χ^2/N	1.15	1.20	1.15
DYratio (15)	9.5	5.2	9.2
CMS W asym. (11)	14.2	8.2	10.2
p_t^T (8)	3.8	7.2	4.2
y_t (5)	8.4	4.3	5.8
y _{tt} (5)	12.5	5.7	7.4
m_{tt} (7)	6.4	2.4	6.5
$t\bar{t}$ total	31.2	19.6	23.9

May also explain NNPDF better fit of E866 DYratio data and CMS
 W charge asymmetry data (15 and 11 points respectively):

Benchmarking ATLAS 8 TeV $t\bar{t}$ lepton+jets Preliminary!

- Additional explanations are other datasets included tensions?
- NNPDF-3.0 had little jet data. NNPDF-4.0 will have much more, it sees similar issues as MSHT, CT, ATLAS for this dataset.
- Useful to consider different jet datasets as well as CMS 8 TeV jets*:

Dataset (N)	MSHT reduced (default CMS8j)	MSHT reduced + CMS7j	MSHT reduced + AT7j	MSHT reduced (CMS7j only)	MSHT reduced (AT7j only)	MSHT reduced (no jets)
χ^2/N	1.15	1.15	1.18	1.11	1.17	1.12
CMS 8 TeV jets (174)	243.6	247.2	249.9	-	-	-
CMS 7 TeV jets (158)	-	163.5	-	156.4	-	-
ATLAS 7 TeV jets (140)	-	-	225.7	-	210.4	-
ρ_t^T (8)	3.8	4.0	4.3	4.0	4.6	4.5
y _t (5)	8.4	7.3	7.3	6.4	5.5	5.2
y _{tt} (5)	12.5	9.8	10.2	7.2	5.2	6.6
m _{tt} (7)	6.4	6.4	7.0	6.4	6.4	7.4
t₹ total	31.2	27.5	28.8	24.0	21.6	23.8

- Tensions between CMS 8 TeV jets and ATLAS, CMS 7 TeV jets.
- Similar tensions with ATLAS 8 TeV $t\bar{t}$, specifically the rapidity distributions, which favour lower gluon. *Note "uncorr" case shown, systematic correlations not included, same pattern observed in "corr" case.

High *x* gluon - Jet tensions

- Not only tensions between different dataset types at high x, also tensions within dataset types, e.g. between different jet measurements.
- ATLAS 7 TeV jets pulls gluon down at high x, whereas CMS jets (mainly 8 TeV) pull gluon up.
- Global fit is a balance between these different pulls and those of Zp_T , $t\bar{t}$ datasets here.

† MSHT20, TC, S. Bailey, L. Harland-Lang, A. Martin, R. Thorne 2012.04684

ATLAS 8 TeV multi-differential $t\bar{t}$ lepton+jets Preliminary!

• What effect does the inclusion of this data in the reduced fit have on the gluon?

- Fitting all 4 distributions separately, uncorrelated ⇒ gluon moves down at high x, driven by the rapidity data.
- ullet Applying correlations \Rightarrow gluon raised and shape altered at high x.
- Decorrelating parton shower between distributions ⇒ reverts the gluon to shape obtained when all 4 separately uncorrelated fitted.
- Additionally decorrelating within distributions \Rightarrow moves gluon closer to fit without $t\bar{t}$ data as its constraining power is reduced.
- Overall, gluon shape moves in direction of global fit gluon.

ATLAS 8 TeV $t\bar{t}$ with various jet datasets: gluon

• What effect does the inclusion of various other jet datasets in addition to the $t\bar{t}$ have on the gluon? Very Preliminary!

- $t\bar{t}$ improves when gluon pulled down, as does ATLAS 7 TeV jets and CMS 7 TeV jets (although it pulls gluon back up at highest x), CMS 8 TeV jets improves when gluon pulled up.
- Decorrelation reduces impact of data on gluon so it is pulled down less than the "uncorr" case and jet datasets worsen (7 TeV) / improve (8 TeV) accordingly.

ATLAS 8 TeV multi-differential $t\bar{t}$ lepton+jets gluon

 What effect does the inclusion of this data in the reduced fit have on the gluon?

Preliminary!

• Double weighting (yellow) pulls gluon further in direction of rapidity pull (lower at high x) as expected.

Reduced Fits: Current Status Summary*

- Very good agreement in the gluon-gluon, quark-quark and quark-gluon luminosities.
- Small difference in quark-antiquark luminosity, still some flavour decomposition differences, although within MSHT uncertainties.

 *Note this is without the $t\bar{t}$ added.

Reduced Fits χ^2 replica distributions

Preliminary!

- ullet As well as the overall PDFs, can analyse χ^2 .
- Can use CT/MSHT reduced fit eigenvectors to generate replicas.
 MC replicas from PDF4LHC'2021 reduced fits
 MC replicas from PDF4LHC'2021 reduced fits

- Overall distributions of reduced fits replicas similar between CT and MSHT, particularly non-symmetrised versions.
- Symmetrised versions in better agreement with NNPDF but still different.
- Some limited qualitative agreement at least for symmetrised case.
 Plots from P. Nadolsky

Deuteron and Nuclear Corrections in MSHT20

- Several older DIS datasets use deuteron or heavy nuclear targets.
- Deuteron data required to fully separate u, d at moderate-large x.
- Heavy nuclear data, via C.C. scattering, required for more constraints on flavour decomposition and strange (dimuon data).
- Deuteron correction is 4-parameter prefactor to usual average of p and n:

$$\begin{split} F^d(x,Q^2) &= c(x) \left[F^p(x,Q^2) + F^n(x,Q^2) \right] / 2, \\ c(x) &= (1+0.01N) \left[1 + 0.01 c_1 \ln^2(x_p/x) \right], & x < x_p, \\ c(x) &= (1+0.01N) \left[1 + 0.01 c_2 \ln^2(x/x_p) + 0.01 c_3 \ln^{20}(x/x_p) \right], & x > x_p, \end{split}$$

Nuclear correction is prefactor*: *de Florian et al arXiv:1112.6324.

$$f^A(x, Q^2) = R_f(x, Q^2, A) f(x, Q^2).$$

- This is multiplied by a 3-parameter modification function to allow penalty-free change in shape and/or normalisation.
- Both deuteron and nuclear corrections prefer modifications of 1%.
 More details on all of this in MMHT14 1412.3989, MSHT20 2012.04684.

PDF4LHC21 Benchmarking Summary:

- Great amounts of new data, theoretical improvements, PDF methodological improvements have meant substantial changes since PDF4LHC15.
- We have been performing a benchmarking exercise of the 3 global fit PDF groups most recent sets: MSHT20, CT18, NNPDF3.1.
- Based on comparing "Reduced Fits" with common dataset and common theory settings where possible.
- Goal of exercise is the understanding of differences which have emerged in PDF central values and uncertainties.
 ⇒ Good progress.
- End result: PDF4LHC21 set of PDFs, central PDFs and Hessian error set (30-50 sufficient) representing the 3 published PDFs.
- We welcome suggestions, feedback and discussion!

More details on all of this in the slides!

Questions for Experimentalists/Users:

- Are there any lessons from experience with PDF4LHC15 we can take into account?
- Now would be the time to account for these before the benchmarking is finished and combination is performed...
- What form should the output set be provided in? E.g. Hessian and/or MC replicas?
- Are there additional variation sets we could consider providing?
 - ▶ Effect of perturbative vs fitted charm: Relevant for NNPDF. Use in providing alternative set with all perturbative charm?
 - ► Small *x* resummation effects, effects low *x* gluon, could be relevant for 100TeV collider? PDF4100TeV?
 - ▶ Any need for such sets or others (inclusive jets vs dijets for example)?
- We welcome suggestions, feedback and discussion!