Constraining nuclear quadrupole deformation in relativistic heavy-ion collisions from a multiphase transport model

Supported in part by:

Jiangyong Jia, Shengli Huang, Giuliano Giacalone and Chunjian Zhang

Based on preprints: 2102.05200, 2105.01638, 2105.05713

TRENTo and IP-Glasma+MUSIC+UrQMD all show hierarchical β_2 dependence in $\rho(v_2^2, \lceil p_T \rceil)$

Observables

dynamical quantities with self-correlation removed

0-1% 0.4 0.6 0.8 0.2<p_<2 GeV U+U B=0 U+U β=0.22 U+U β=-0.15 U+U β=-0.28 0.1 0.15 $*\left\langle v_{2}^{2} ight angle$ strongly depends eta_{2} in central collisions, while $\left\langle v_{3}^{2} ight angle$ isn't . * $\langle v_2^2 \rangle$ and $\langle \epsilon_2^2 \rangle$ are indeed linear in β_2^2 . * Constraint the β₂

Centrality [%] * Numerical results are confirmed

Intrinsic connection between the phenomenology of heavy-ion collisions and

Summary

STAR Prelimin

* AMPT shows the hierarchical β₂ dependence in ρ(v₂, [p_T]) while not in ρ(v₃, [p_T]

* AMPT could also be used to quantify the β_2 value of uranium nuclei.

* AMPT $\rho(v_n^2, [p_T])$ compared with STAR Preliminary results

N_{ch} (hηl<0.5)

heavy-ion collisions and the structure of atomic nuclei

* AMPT show comparable trend and a clear β_2 dependence in Uranium $\rho(v_2^2, [p_T])$

* The nonflow were suppressed in $cov(v_2^2, [p_T])$ clearly by subevent methods

* Numerically calculate the intrinsic connection between the phenomenology

 \triangleright Clear geometric effect and the linear β_2 dependence in central collisions.

- ightharpoonup The sign-change behavior in $\rho(v_2^2, [p_T])$ is robust in U+U collisions. \triangleright It could be used to quantify quadrupole component β_2 compared with STAR data.

