<u>Electron – Muon – Tau Universality</u> <u>Theory Perspective and Overview</u>

William J. Marciano Brookhaven National Laboratory Tau 2021

Lepton Universality

Electroweak SU(2)_LxU(1)_Y+ doublet Higgs Sector Flavor Universal vs Non-Universal

• e, μ, τ ν_e ν_μ ντ

Universal bare gauge boson couplings $g_1^0 \& g_2^0$ for all 3 generations vs <u>very different</u> Yukawa couplings in Higgs sector -> lepton masses hierarchy and <u>large</u> neutrino mixing

EXPECT: neutrino osc. & τ phenomena

Major playing fields for particle physics

Some "New Physics" Examples (beyond SM Higgs doublet) that break universality (often solve g_{μ} -2)

1) Heavy Lepton mixing eg. Vector like heavy leptons

2) Additional U(1)_{L τ -L μ}. Light or Heavy Z' Boson, Dark Physics etc.

3) Additional Higgs doublets, singlets ?

4) Other?

Look for "new physics" in precision measurements (lepton g-2), universality violation,

and neutrino osc., rare processes $\mu \rightarrow e\gamma$, $\mu N \rightarrow eN$, $\tau \rightarrow 3\mu$ etc

Popular Experimental Hints of New Physics

Anomalous Magnetic Moment $\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} = 251(41)(43) \times 10^{-11} 4.2\sigma!$ Δa_e (-2.4 σ or +1.6 σ) depends on α from Cs vs Rb Δa_{τ} (is O(10⁻⁷) precision possible?

- CKM Unitarity Violation. $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9985(5)$? 3 sigma
- $|V_{us}|/|V_{ud}|$ value? <u>0.2292(9)</u> from K₁₃ or <u>0.2313(4</u>) from K_{µ2} 2 sigma difference
- Semi-Leptonic B decays & Possible e, μ , τ universality breakdown?

(Anticipating LHC, Belle II & proposed super tau-charm factory at high luminosity)

Determination of Fermi constant G_F

<u>MuLan Lifetime</u>: $\tau_{\mu} = 2.1969811(22) \times 10^{-6}$ sec most precise lifetime measurement (ever) determines $\Gamma(\mu \rightarrow e\nu\nu(\gamma))^{-1} \rightarrow G_F$ called $G_{\mu}=1.1663787(6) \times 10^{-5} \text{GeV}^{-2}$ spectacular

Second best determination of G_F

• First row unitarity $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9985(5)$?

 G_{CKM} = 1.1655(3)x10⁻⁵GeV⁻² smaller than G_{μ} by 3 sigma

Other definitions use α , mZ, mW, $sin^2\theta_W$ + natural relationship,

leptonic Z, W, τ partial decay widths etc. generally involve larger errors.

Comparison among various G_F determinations constrains "new physics". S, T and U, W*, Z', heavy leptons etc.

• W. Marciano PRD (1999)

Recent Update and Global fit to electroweak data (see figure)

A. Crivellin, M. Hoferichter and C. Manzari PRL (2021)

Taken from: A. Crivellin, M. Hoferichter, and C. Manzari PRL 2021

 $\mathbf{2}$

M_W [GeV]	[8] 80.379(12)	A a	$\begin{bmatrix} 10 \end{bmatrix} 0 1513(21)$
$\Gamma_W [{ m GeV}]$	[8] 2.085(42)	\mathbf{R}^0	$\begin{bmatrix} 10 \\ 10 \end{bmatrix} = 0.1010(21)$
$BR(W \rightarrow had)$	[8] 0.6741(27)	10e 10e	$\begin{bmatrix} 10 \end{bmatrix} 20.101(20)$
$BR(W \rightarrow lep)$	[8] 0.1086(9)	$A_{\rm FB}$	$\begin{bmatrix} 10 \\ 0.0171(10) \\ 10 \\ 0.01600(66) \\ \end{bmatrix}$
$\sin^2 \theta_{\rm eff(Q_{\rm EB})}$	[8] 0.2324(12)	R_b°	[10] 0.21629(66)
$\sin^2 \theta_{\rm eff(Tevatron)}$		R_c^0	[10] 0.1721(30)
$\sin^2\theta_{\text{eff}(LHC)}$		$A^{0,b}_{ m FB}$	[10] 0.0992(16)
Γ_{z} [GeV]	[10] 2.4952(23)	$A_{ m FB}^{0,c}$	[10] 0.0707(35)
σ_{i}^{0} [nb]	$\begin{bmatrix} 10 \end{bmatrix} 41.541(37)$	A_b	[10] 0.923(20)
$\mathbf{P}^{\mathrm{pol}}$	$\begin{bmatrix} 10 \\ 10 \end{bmatrix} 0 1465(33)$	A_c	[10] 0.670(27)
1 τ			

TABLE I: EW observables included in our global fit together with their current experimental values.

Parameter	Prior
$\alpha \times 10^3$ [8]	7.2973525664(17)
$\Delta \alpha_{\rm had} \times 10^4 \ [16, 17]$	276.1(1.1)
$\alpha_s(M_Z)$ [8, 33]	0.1179(10)
M_Z [GeV] [8, 34–37]	91.1876(21)
M_H [GeV] [8, 38–40]	125.10(14)
$m_t \; [\text{GeV}] \; [8, 41 - 44]$	172.76(30)

TABLE II: Parameters of the EW fit together with their (Gaussian) priors.

the Cabibbo angle anomaly (CAA). The significance of

5

QED Corrections to Radiative Inclusive Muon Decay

(First Full 3 loop Calculation: Fael, Schonwald, Steinhauser PRD 2021)

$$\tau_{\mu}^{-1} = \Gamma(\mu \to \text{all}) = \frac{G_{\mu}^2 m_{\mu}^5}{192\pi^3} f\left(\frac{m_e^2}{m_{\mu}^2}\right) (1 + R.C.) \left(1 + \frac{3}{5} \frac{m_{\mu}^2}{m_W^2}\right)$$
$$f(x) = 1 - 8x + 8x^3 - x^4 - 12x^2\ell nx$$

$$R.C. = \frac{\alpha}{2\pi} \left(\frac{25}{4} - \pi^2\right) \left(1 + \frac{\alpha}{\pi} \left(\frac{2}{3}\ell n \frac{m_{\mu}}{m_e} - 3.7\right)\right)$$

Fael, Schonwald, Steinhauser 2021 three loop corrections

Kinoshita & Sirlin 1959van Ritbergen & Stuart 2000one looptwo loop

 $\tau_{\mu} = 2.1969811(22)x10^{-6}sec \rightarrow G_{\mu}=1.1663787(6)x10^{-5}GeV^{-2}$ most precise Fermi constant value by far

<u>Application to</u> $\Gamma(\tau \rightarrow \ell \nu \nu(\gamma))$ $\ell = e, \mu Radiative Inclusive$

- Use PDG averages as input
- m_τ = 1776.86(12)MeV
- τ_{τ} = 290.3(5)x10⁻¹⁵sec
- BR($\tau \rightarrow \mu \nu \nu$) = 0.1739(4) Radiative inclusive?
- BR($\tau \rightarrow e\nu\nu$) = 0.1782(4)

 $\Gamma(\tau \to \mu \nu \nu (\gamma)) = 3.943(14) \times 10^{-13} \text{GeV}?$

 $\Gamma(\tau \to e\nu\nu(\gamma)) = 4.040(14) \times 10^{-13} \text{GeV}?$

 $G_{\tau\mu} = \frac{1.1681(20) \times 10^{-5} \text{GeV}^{-2}}{\text{Good agreement with } G_{\mu} = 1.1663787(6) \times 10^{-5} \text{GeV}^{-2}}$ at O(10⁻³) Aim for factor of 5 improvement in future τ_{τ} & BR (Hard)!

7

Lepton Mass effects on QED Radiative Corrections & Precision

- $m_e = 0.5109989461(31)$ MeV $m_{\mu} = 105.6583745(24)$ MeV $m_{\tau} = 1776.86(12)$ MeV
- Smaller Mass-> larger bremsstrahlung, detector requirements differ for e, μ , τ Experimental cuts can induce fake violations of lepton universality
- Compare <u>radiative inclusive safe</u> quantities (eg lifetimes) or handle cut effects with care. Bremsstrahlung mainly shifts charged particle spectrum to lower energy values Integrating over entire spectrum free of mass singularities (KLN theorem) <u>Translate exp. measurements into radiative inclusive quantities</u>
 - B decay anomalies need further study. Possible subtle acceptance effects.

Some other interesting universality tests in τ , K and π decays

_see detailed talks by D. Hertzog, G. Lopez-Castro, A. Lusiani

$$\frac{\Gamma(\tau \to \pi \nu(\gamma))}{\Gamma(\pi \to \mu \nu(\gamma))} \text{ complements } \frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))} = 1.2327(23) \times 10^{-4} \text{ (LOI for factor 10 improvement)}$$

$$\frac{\Gamma(\tau \to K\nu_{\tau}[\gamma])}{\Gamma(\tau \to \pi\nu_{\tau}[\gamma])} = \frac{|V_{us}|^2 F_K^2}{|V_{ud}|^2 F_{\pi}^2} \frac{(1 - m_K^2/M_{\tau}^2)^2}{(1 - m_{\pi}^2/M_{\tau}^2)^2} (1 + \delta), \quad \left|\frac{V_{us}}{V_{ud}}\right| = 0.2288 \pm 0.0010_{\text{th}} \pm 0.0017_{\text{exp}}$$

$$\text{while } \frac{\Gamma(K \to \mu\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))} \text{ leads to } \frac{V_{us}}{V_{ud}} = 0.2313(4) \text{ differ by } 1.25 \text{ sigma}$$

Tau decays somewhat favor 1st row CKM uitarity violation $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9985(5)$? As well as smaller K₁₃ determination of $V_{us} \approx 0.2231(6)$

<u>Questions</u>: K/π separation?, radiative inclusive? Improvement possible &warranted?

9

<u>Conclusions</u>

- SM tested at precision level (better than O(10⁻³). <u>Improvement?</u>
- Time to find origin of flavor universality violation. Why 3 generations?
- Tau physics at LHC, Belle II & tau-charm factory. (High Luminosity)
- Neutrino Oscillations potentially very important for further discovery v_{τ} should play a major role in future tau meetings
- Look for Rare FCNC Events eg $\tau \rightarrow 3\mu$. Other rare reactions eg. $\mu N \rightarrow eN$ Expect: Tau Meetings to Remain Vibrant & Popular