Status and Prospects for Tau Property Measurements at Belle II.

<u>Michel Hernández Villanueva</u> DESY

On behalf of the Belle II collaboration

The 16th International Workshop on Tau Lepton Physics (TAU 2021) Sep 27, 2021

SuperKEKB

A B factory of next generation

SuperKEKB

A B factory of next generation

- Challenges at L= 6.5×10^{35} cm⁻² s⁻¹:
 - **Higher background** (Radiative Bhabha, Touschek, beam-gas scattering, etc.).
 - Higher trigger rates (High performance DAQ, computing).

The Belle II Collaboration

1100 members, 123 institutions, 26 countries

The Belle II Collaboration

1100 members, 123 institutions, 26 countries

The Belle II Experiment

arXiv:1011.0352 [physics.ins-det]

Software:

Open-source sophisticated algorithms for simulation, reconstruction, visualization, and analysis.

Comput. Softw. Big Sci. 3 1 (2019)

EPJ Web Conf., 245 (2020) 11007

Integrated Luminosity

Today

- Super B-factory performance levels, despite a global pandemic.
 - World records:
 - 1.96 fb⁻¹/day,
 - 12 fb⁻¹/week,
 - 40 fb⁻¹/month
 - Luminosity above the B factories and LHC, with a product of beam currents 3.5 times lower than KEKB.
- "Social distancing" scheme for on-site shifts, and mobilized remote shifters around the world

Integrated Luminosity

Today

ACCELERATORS | NEWS

SuperKEKB raises the bar

22 August 2021

Record breaker The SuperKEKB accelerator at the KEK laboratory in Tsukuba, Japan. Credit: S. Takahashi / KEK

On 22 June, the SuperKEKB accelerator at the KEK laboratory in Tsukuba, Japan set a new world record for peak luminosity, reaching 3.1×10^{34} cm⁻² s⁻¹ in the Belle II detector. Until last year, the luminosity record stood at 2.1×10^{34} cm⁻² s⁻¹, shared by the former KEKB accelerator and the LHC. In the summer of 2020, however, SuperKEKB/Belle II surpassed this value with a peak luminosity of 2.4×10^{34} cm⁻² s⁻¹.

https://cerncourier.com/a/superkekb-raises-the-bar/

Integrated Luminosity

Projections

Target: **x40** the integrated luminosity collected by the previous B-factories.

- Milestones:
 - ~500 fb⁻¹ by the next summer (2022).
 - O(10 ab⁻¹) by the upgrade of the IR (2026).
 - 50 ab⁻¹ after the upgrade, by 2030.

Belle II Physics Program

- The physics program of Belle II covers measurements in B decays, charm, dark sectors, exotic particles, etc.
- Further details can be found in "The Belle II Physics Book": <u>PTEP 2019 (2019) 12, 123C01</u>
- The enormous number of e+ecollisions features a unique environment for the study of τ physics with high precision.

Belle II Physics Program

- The physics program of Belle II covers measurements in B decays, charm, dark sectors, exotic particles, etc.
- Further details can be found in "The Belle II Physics Book": <u>PTEP 2019 (2019) 12, 123C01</u>
- The enormous number of e+ecollisions features a unique environment for the study of τ physics with high precision.

Tau leptons at the B factories

Let's talk about the tau

• At Y(4S): $\sigma(e^+e^- --> B\overline{B}) = 1.05 \text{ nb}$ $\sigma(e^+e^- --> \tau + \tau -) = 0.92 \text{ nb}$

- Approximately 1M tau pairs per fb⁻¹
- B-Factories are also *t*-factories

Figure: The particle zoo.

Tau leptons at the B factories

Let's talk about the tau

- B-Factories are also τ -factories
- Features of a B-Factory:
 - Well-defined initial state.
 - High vertex resolution.
 - Excellent calorimetry.
 - Sophisticated particle ID.

providing a great environment for the study of tau lepton decays.

 B-Factories of first generation provided (and keep providing!) many interesting results as the luminosity increased:

Most of these results will be updated with the Belle II data set.

Contributions during TAU 2021 by Belle II

Join us!

Tuesday 28/09

Searches for violation of Lepton Flavor Universality at Belle II	Alberto Martini
Virtual, Indiana University	17:35 - 17:55
First results and prospects for tau LFV decay tau -> e + alpha(invisible) at Belle II	Alejandro De Yta Hernandez
Virtual, Indiana University	20:20 - 20:40
N	

Friday 01/10

Future directions on tau physics with Belle II	Ami Rostomyan
Virtual, Indiana University	19:50 - 20:15
Physics Prospects of Beam Polarization at Belle II	Michael Roney
Virtual, Indiana University	21:35 - 22:00

Contributions during TAU 2021 by Belle II

Join us!

Tuesday 28/09

Note: Times in CET 11

Tau decay event in early Belle II data

DESY.

Performance

Towards precision measurements in tau lepton physics

• Tau pairs are not only tools for the comprehension of fundamental physics, but also for the understanding of our detector.

Tracking efficiency

• Tracking efficiency and fake rates have been measured using $\tau\tau$ events, with one of the leptons decaying to

Calibrated discrepancy between data/MC:

$$\delta^* = 1 - \epsilon_{\rm data} / \epsilon_{\rm MC}$$

Performance

Towards precision measurements in tau lepton physics

Lepton ID performance

 Particle identification is based on the global likelihood ratio from all sub detectors.

$$\ell \text{ ID} = \frac{\mathcal{L}_{\ell}}{\mathcal{L}_e + \mathcal{L}_{\mu} + \mathcal{L}_{\pi} + \mathcal{L}_K + \mathcal{L}_p}$$

• With the same tag-and-probe approach, lepton misidentification rates are calculated with pions from the 3-prong decay $\tau^- \rightarrow 3\pi^{\pm} + \nu_{\tau}$

Performance

Towards precision measurements in tau lepton physics

Trigger efficiencies

- The Level 1 trigger efficiency has been studied using $e^+e^- \rightarrow \tau^+\tau^-$ events with 1x1 and 3x1 topologies.
- Full track triggers present low efficiency in endcaps.
- To compensate, the CDC trigger also searches for short tracks, providing a significant gain in efficiency for endcaps/low p_T.

Belle II (Preliminary)

L1 trigger efficiency

0.8

0.6

0.4

0.2

Ldt = 3.7 fb

80

track θ [deg]

track θ [deg]

100

120

 $\tau \tau \rightarrow 1 x3 \text{ prong}$

60

track triggers

140

DESY.

Single Track Trigger

Neural-net based hardware track trigger

- A neural-ned based hardware trigger ("y trigger") is now operational, showing great performance. •
- It fires if it finds a track within 15 cm from the collision vertex ٠ and a momentum larger than 700 MeV.

- Single hidden layer with 81 neurons and 27
- Inputs: Hits on wires of the CDC.
- Execution time: 300 ns

First results coming, with promising results.

Measurement of tau properties at Belle II

Mass, lifetime, leptonic decays

• Lepton Flavor Universality test:

$$B_{\tau\ell} \propto B_{\mu e} \frac{\tau_{\tau}}{\tau_{\mu}} \frac{m_{\tau}^5}{m_{\mu}^5}$$

- Inputs from tau decays:
 - Tau mass m_{τ}

- Tau lifetime τ_{τ}
- Leptonic BR $B_{\tau\ell}$
- Belle II has the potential of provide precise measurements of these parameters.
- "Wait, did you just say LFU?" Join us on Tuesday!

Searches for violation of Lepton Flavor Universality at Belle II	Alberto Martini
Virtual, Indiana University	17:35 - 17:55

Figure: EPJ Web Conf., 218 (2019) 05002

Tau Lepton Mass Measurement

Historical overview

• The lepton masses are fundamental parameters of the SM:

$$\begin{split} m_e &= (0.5109989461 \pm 0.000000031) \, \text{MeV}, \\ m_\mu &= (105.6583745 \pm 0.0000024) \, \text{MeV}, \\ m_\tau &= (1776.86 \pm 0.12) \, \text{MeV}. \end{split}$$

- Precision of m_{τ} have consequences in LFU tests.
- Two methods for measuring m_{τ} :
 - Measurement in the production threshold (DELCO, BES, KEDR, BES III).
 - Pseudomass distribution (ARGUS, OPAL, BaBar, Belle).
- The latter will be exploited in Belle II.

Tau Lepton Mass Measurement

Pseudomass distribution

- Measured in the decay mode $\tau \rightarrow 3\pi v$, using a pseudomass technique developed by the **ARGUS** collaboration.
- The tau mass can be calculated as

$$\begin{split} m_{\tau}^2 &= (p_h + p_{\nu})^2 \\ &= 2E_h(E_{\tau} - E_h) + m_h^2 - 2 \left| \overrightarrow{p}_h \right| (E_{\tau} - E_h) \ \cos(\overrightarrow{p}_h, \overrightarrow{p}_{\nu}) \end{split}$$

• As the direction of the neutrino is not known, the approximation $\cos(\overrightarrow{p}_{\nu}, \overrightarrow{p}_{h}) = 1$ is taken, resulting in

 $M_{\min}^2 = 2E_h(E_\tau - E_h) + m_h^2 - 2 |\vec{p}_h| (E_\tau - E_h) < m_\tau^2$

• Then, the distribution of the pseudomass is fitted to an empirical edge function, and the position of the cutoff indicates the value of the mass.

Phys. Lett. B 292 (1992) 221-228

Figure: The ARGUS detector at DESY

Tau Lepton Mass Measurement

Performance test @ 8.76 fb⁻¹

- Our latest result¹ (8.76 fb⁻¹, ICHEP 2020): **1777.28 ± 0.75 ± 0.33 MeV/c²**.
- Main systematic sources:
 - Momentum shift due to imperfections on the B-Field map: 0.29 MeV/c².
 - Bias of the mτ estimator: 0.12 MeV/c².

Pseudomass distribution, data vs MC

🔶 Data MC total **Belle II** (Preliminary) 9000 ---τ(\rightarrow πππν)τ(\rightarrow e.u. π. ππ⁰) ······ ττ BG $Ldt = 8.8 \text{ fb}^{-1}$ 8000 $- - \cdot II(\gamma)$ (I=e, μ) =e.u) & eehh qq (q=u,d,s,c) 7000 6000 Events 5000 4000 3000 2000 1000 Λ Data / MC 1.5 0.5 1.2 2.2 0.4 0.6 0.8 1.4 1.6 1.8 2 M_{min} [GeV/c²] ¹ arXiv:2008.04665 [hep-ex]

Fit to edge p.d.f. in the cutoff region

 $F(M_{\min}, \vec{P}) = (P_3 + P_4 M_{\min}) \cdot \tan^{-1}[(M_{\min} - P_1)/P_2] + P_5 M_{\min} + 1$

Tau Mass Measurement at Belle II

Projection towards high luminosity

 Our result is still dominated by statistical uncertainty, and consistent with previous measurements:

Blue: statistical; Green: systematic

Tau Mass Measurement at Belle II

Projection towards high luminosity

• Our result is still dominated by statistical uncertainty, and consistent with previous measurements:

Blue: statistical; Green: systematic

We expect significant reduction in the main systematic uncertainties.

"Can wait to see more details!" Join us on Friday!

Exploiting the nano-beam scheme

- Important SM parameter. Its precision has implications in LFU, α_s (m $_{\tau}$), etc.
- Previous measurements:
 - Z-peak: LEP (DELPHI, L3, ALEPH, OPAL).
 - Y-peak: CLEO, BaBar, Belle 1.

¹ PRL 112, 031801 (2014), arXiv:1310.8503 [hep-ex]

The world-leading measurement by Belle¹ uses a **3x3 topology**, with both tau leptons decaying to $3\pi v_{\tau}$.

τ_τ = 290.17 ± 0.53(stat) ± 0.33(syst) fs

Exploiting the nano-beam scheme

- Important SM parameter. Its precision has implications in LFU, $\alpha_s(m_r)$, etc.
- Previous measurements:
 - Z-peak: LEP (DELPHI, L3, ALEPH, OPAL).
 - Y-peak: CLEO, BaBar, Belle 1.

¹ PRL 112, 031801 (2014), arXiv:1310.8503 [hep-ex]

The world-leading measurement by Belle¹ uses a **3x3 topology**, with both tau leptons decaying to $3\pi v_{\tau}$.

τ_τ = 290.17 ± 0.53(stat) ± 0.33(syst) fs

Strategy at Belle II:

- 1. Reconstruct vertex for 3-prong τ . Only one 3-prong = higher statistics.
- 2. Estimate the τ momentum $\overrightarrow{p}_{\tau}$. Hadronic decays in both sides.
- 3. Find the production vertex. Intersection of $\overrightarrow{p}_{\tau}$ with the plane IP_y.

Sensitivity at 200 fb⁻¹

• ℓ_{τ} reconstruction and IP constrain:

- Lifetime extraction:
 - $\tau_{\tau} = 287.2 \pm 0.5$ (stat) fs
 - Same statistical uncertainty of Belle. (200 fb⁻¹ vs 711 fb⁻¹)

- τ_τ presents ≃ 3 fs bias.
 (Generated lifetime: 290.57 fs)
 - ISR/FSR losses = underestimation of the proper time.
 - · And intrinsic bias in the measurement.
 - Further studies to estimate systematics:
 - Test dependence from resolution function in the fit
 - Beam-spot position
 - ISR/FSR simulation
 - Vertex detector alignment (dominant at Belle and Babar)

Detector performance

- In MC simulations, the Belle II proper time resolution is ~2x better than Belle.
 - Due to PXD and smaller beam pipe diameter.

Proper decay time resolution:

- For comparison, the D meson lifetime measurement by Belle II was recently published¹.
 - Improvement in resolution is confirmed

"Awesome! How to know more?" Join us on Friday!

- In 2021, SuperKEKB has set a new record in peak luminosity at L_{peak} = 3.1x10³⁴ cm⁻² s⁻¹.
- To the date, 213 fb⁻¹ of collision data have been recorded by Belle II. By summer, we expect to collect
 of the order of ~ BaBar data set.
- Since its discovery, the tau lepton has been studied at new every e⁺e⁻ collider into operation, improving the measurements with every upgrade.
 - In Belle II we are very motivated, and ready to reach new limits in the precision.
- Tau mass studies with the early data show potential for an update in the measurement of m_{τ} using the pseudomass technique.
- The lifetime measurements at Belle II show the potential of the nano-beam scheme with an upgraded vertex detection system. First studies of τ_{τ} very promising, with an update in the measurement feasible in the coming months.

Thank you

Contact

DESY. Deutsches Elektronen-Synchrotron Michel Hernandez Villanueva michel.hernandez.villanueva@desy.de Orcid: 0000-0002-6322-5587

www.desy.de