

Sterile neutrino theory overview

Pedro A. N. Machado

September 29th 2021

Fermilab U.S. DEPARTMENT OF Office of Science

The short baseline anomalies are largely unexplained

Theoretical calculation is very challenging Error bars are crucial

MiniBooNE

Cannot distinguish electrons from photons Δ to γ background relies on theoretical estimate

Difficult to find consistent interpretation that is not ruled out

The short baseline anomalies are largely unexplained

In this talk, I will go through some interpretations of the anomalies in a critical manner

Standard physics

 Δ background is mainly theory driven

 Δ background is mainly theory driven

An Altarelli Cocktail for the MiniBooNE Anomaly?

Vedran Brdar^{1,2,a} and Joachim Kopp^{3,4,b}

hadronic resonances. We find that not even a combination of uncertainties in different channels adding up unfavorably (an "Altarelli cocktail") appears to be sufficient to resolve the MiniBooNE anomaly. Varying the radiative branching ratios of the $\Delta(1232)$ and N(1440)resonances by $\pm 2\sigma$, however, reduces its significance from 4σ to less than 3σ . We finally

Standard physics:

+ Theoretical calculations for Δ decays are still under discussion

- Not clear there is a common standard origin for LSND and MiniBooNE - Uncertainties on Δ do not allow for such large effect (needs factor of 3)

Light sterile neutrinos

Oscillations via sterile neutrinos don't really work

 $P_{\alpha\beta} \simeq \delta_{\alpha\beta} - 4|U_{\alpha\beta}|^2 (\delta_{\alpha})$

$$_{\alpha\beta} - |U_{\alpha\beta}|^2)\sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

Oscillations via sterile neutrinos don't really work

v_{μ} to v_{e} appearance

$$\sin^2 2\theta_{\mu e} = 4 |U_{e4}|^2 |U_{\mu 4}|^2$$

 v_{μ} disappearance v_e disappearance

Data sets:

 V_e and V_{μ} disappearance VS. V_e appearance

4.7 σ tension

between **DISAPP** and **APP** data sets under eV sterile interpretation

Exercise: remove each experiment and see if agreement improves

Light sterile neutrinos:

- + Explain LSND and MiniBooNE, as well as the reactor and Gallium anomalies
 - Exhibit a gigantic tension with disappearance experiments Not accommodated by standard cosmology

Decays of sterile neutrinos

Dentler Esteban Kopp M 1911.01427 see also Bai, de Gouvea, Moulai, Pasquini, Salvado, Stenico, ...

 $\mathcal{L} \supset -g \, ar{
u}_s
u_s \phi - \sum m_{lphaeta} \, ar{
u}_lpha
u_eta$ $a{=}e{,}\mu{,}\tau{,}s$

Decays of sterile neutrinos

Dentler Esteban Kopp M 1911.01427 see also Bai, de Gouvea, Moulai, Pasquini, Salvado, Stenico, ...

Decays of sterile neutrinos

Two issues

Problem 1: Self-interaction is too strong, neutrinos do not free-stream Solution: Add more light, thermalized degrees of freedom in the early universe

Problem 2: Solar neutrinos also decay, leading to electron antineutrinos
Solution: Neglect LSND

Hostert Pospelov 2008.11851

- + Model independent: explains all anomalies, no tension
- Simple models may present cosmological issues, easy to evade though
- •UV inspired: explains MiniBooNE but accommodating LSND creates a tension with solar antineutrino searches

Dark neutrinos

Dark Neutrinos

Dark neutrinos

Bertuzzo Jana M Zukanovich 1807.09877, 1808.02500 see Abdullahi, Arguelles, Ballett, Hostert, Pascoli, Ross, Tsai

- 1. Neutrino mass is protected by gauge symmetry on the sterile neutrino sector
- 2. Breaking happens at low scale

$$\begin{aligned} \mathcal{L}_{\nu} &= -y_{\nu} \,\overline{L} \widetilde{\phi} N + y_N \, S_2 \,\overline{N} N^c + y_{N'} \, S_2^* \,\overline{N'} N \\ &+ m \,\overline{N'} N^c + \text{h.c.} \,, \end{aligned}$$

- Φ : scalar doublet (+1)
- N: Sterile (+1)
- N': Sterile (-1)
- S_2 : scalar singlet (+2)
- S_1 : scalar singlet (+1)

Dark Neutrinos

Dark neutrinos

Bertuzzo Jana M Zukanovich 1807.09877, 1808.02500 see Abdullahi, Arguelles, Ballett, Hostert, Pascoli, Ross, Tsai

- 1. Neutrino mass is protected by gauge symmetry on the sterile neutrino sector
- 2. Breaking happens at low scale

Dark neutrinos

Bertuzzo Jana M Zukanovich 1807.09877, 1808.02500 see Abdullahi, Arguelles, Ballett, Hostert, Pascoli, Ross, Tsai

- 1. Neutrino mass is protected by gauge symmetry
- 2. Breaking happens at low scale

Dark Neutrinos

Dark neutrinos

Bertuzzo Jana M Zukanovich 1807.09877, 1808.02500 see Abdullahi, Arguelles, Ballett, Hostert, Pascoli, Ross, Tsai

- 1. Neutrino mass is protected by gauge symmetry
- 2. Breaking happens at low scale

Dark Neutrinos

Dark neutrinos

Bertuzzo Jana M Zukanovich 1807.09877, 1808.02500 see Abdullahi, Arguelles, Ballett, Hostert, Pascoli, Ross, Tsai

e

- + Consequence of neutrino mass model
- + Better fit to MiniBooNE than sterile neutrinos
- + Novel signatures beyond neutrino interactions
- •Constraints from high energy experiments, global analysis/scan needed
 - Cannot explain LSND

Dark neutrinos:

Vergani et al 2105.06470 see also Arguelles et al 2109.03831 Ismail et al 2109.05032 Atkinson et al 2105.09357 Brdar et al 2007.15563 Fischer et al 1909.09561 Gninenko 1201.5194, 0902.3802 McKeen Pospelov 1011.3046

 ν_{α}

Pedro A. N. Machado, <u>pmachado@fnal.gov</u>

Vergani et al 2105.06470 see also Arguelles et al 2109.03831 Ismail et al 2109.05032 Atkinson et al 2105.09357 Brdar et al 2007.15563 Fischer et al 1909.09561 Gninenko 1201.5194, 0902.3802 McKeen Pospelov 1011.3046

 ν_{α}

see also Ismail et al 2109.05032 Brdar et al 2007.15563

Vergani et al 2105.06470 Arguelles et al 2109.03831 Atkinson et al 2105.09357

- + Better fit to MiniBooNE than sterile neutrinos
- + Novel signatures beyond neutrino interactions
 - Cannot explain LSND

Other possibilities

- Sterile neutrinos and modified dispersion relations (Doring et al 1808.07460, Barenboim et al 1911.02329): Not clear it works, detailed studies needed
 - eV steriles + NCNSI + CCNSI (Liao et al 18010.01000): Works, but very baroque. UV challenge...
 - Resonant matter effect (Asaadi et al 1712.08019, Smirnov Valera 2108.07202): Strong constraints from higher energy data

Conclusions

Short baseline anomalies are still largely unexplained

New theoretical models lead to new experimental observables

MicroBooNE e⁻ and γ searches will provide invaluable information here

Fermilab's SBN program will be crucial to pin down the explanation

Very hard to explain everything at the same time with UV complete model

Backup

