Two-pion contribution to hadronic vacuum polarization

Peter Stoffer Physik-Institut, University of Zurich and Paul Scherrer Institut

September 30, 2021

The 16th International Workshop on Tau Lepton Physics (TAU2021)

1 Introduction

- 2 Hadronic vacuum polarization
- 3 Two-pion contribution
- 4 Tension with lattice QCD

1 Introduction

- 2 Hadronic vacuum polarization
- 3 Two-pion contribution
- 4 Tension with lattice QCD

$(g-2)_{\mu}$: theory vs. experiment

• discrepancy between SM theory white paper and experiment (E821 and FNAL combined) 4.2σ

 \rightarrow talk by J. Stapleton

- hint to new physics?
- size of discrepancy points at electroweak scale
 ⇒ heavy new physics needs some enhancement mechanism
- theory error completely dominated by hadronic
 effects → talk by G. Colangelo

Muon anomalous magnetic moment $(g-2)_{\mu}$

recent and future experimental progress:

 FNAL will improve precision further: factor of 4 wrt E821

Introduction

 theory still needs to reduce SM uncertainty!

Photo: Glukicov (License: CC-BY-SA-4.0)

muon g-2 discrepancy

Muon anomalous magnetic moment $(g-2)_{\mu}$

recent and future experimental progress:

 FNAL will improve precision further: factor of 4 wrt E821

Introduction

 theory still needs to reduce SM uncertainty!

Photo: Glukicov (License: CC-BY-SA-4.0)

muon g-2 discrepancy

- 2 Hadronic vacuum polarization
- 3 Two-pion contribution
- 4 Tension with lattice QCD

- at present evaluated via dispersion relations and cross-section input from $e^+e^- \rightarrow$ hadrons
- intriguing discrepancies between e⁺e[−] experiments
 ⇒ treated as additional systematic uncertainty
- lattice QCD making fast progress \rightarrow talk by A. El-Khadra
- 2.1σ tension between dispersion relations and latest lattice results → S. Borsanyi *et al.*, Nature (2021)

2) Hadronic vacuum polarization

HVP contribution to $(g-2)_{\mu}$

$$a_{\mu}^{\rm HVP} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\rm thr}}^{\infty} ds \, \frac{\hat{K}(s)}{s} \, \sigma(e^+e^- \to {\rm hadrons})$$

- basic principles: unitarity and analyticity
- direct relation to data: total hadronic cross section $\sigma(e^+e^- \rightarrow \text{hadrons})$
- dedicated e⁺e⁻ program (BaBar, Belle, BESIII, CMD3, KLOE, SND)

→ talks by B. Shwartz, T. Dimova, P. Lukin, K. Todyshev, A. Denig

Hadronic vacuum polarization

final white paper number: data-driven evaluation

$$a_{\mu}^{\rm LO\;HVP,\;pheno} = 6\,931(40)\times 10^{-11}$$

previous average of published lattice-QCD results

$$a_{\mu}^{\rm LO\ HVP,\ lattice\ average}=7\,116(184)\times10^{-11}$$

newest lattice-QCD result

→ S. Borsanyi *et al.*, Nature (2021)

$$a_{\mu}^{\rm LO \; HVP,\; lattice} = 7\,075(55) \times 10^{-11}$$

1 Introduction

- 2 Hadronic vacuum polarization
- 3 Two-pion contribution
- 4 Tension with lattice QCD

Two-pion contribution to HVP

- $\pi\pi$ contribution amounts to more than 70% of HVP contribution
- responsible for a similar fraction of HVP uncertainty
- can be expressed in terms of pion vector form factor ⇒ constraints from analyticity and unitarity

→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

Dispersive representation of pion VFF

 \rightarrow Colangelo, Hoferichter, Stoffer, JHEP **02** (2019) 006

Omnès function with elastic ππ-scattering *P*-wave phase shift δ₁¹(s) as input:

$$\Omega_1^1(s) = \exp\left\{\frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \frac{\delta_1^1(s')}{s'(s'-s)}\right\}$$

3

Dispersive representation of pion VFF

 \rightarrow Colangelo, Hoferichter, Stoffer, JHEP **02** (2019) 006

 isospin-breaking 3π intermediate state: negligible apart from ω resonance (ρ-ω interference effect)

$$G_{\omega}(s) = 1 + \frac{s}{\pi} \int_{9M_{\pi}^2}^{\infty} ds' \frac{\mathrm{Im}g_{\omega}(s')}{s'(s'-s)} \left(\frac{1 - \frac{9M_{\pi}^2}{s'}}{1 - \frac{9M_{\pi}^2}{M_{\omega}^2}}\right)^4,$$
$$g_{\omega}(s) = 1 + \epsilon_{\omega} \frac{s}{(M_{\omega} - \frac{i}{2}\Gamma_{\omega})^2 - s}$$

Dispersive representation of pion VFF

 \rightarrow Colangelo, Hoferichter, Stoffer, JHEP **02** (2019) 006

- heavier intermediate states: 4π (mainly $\pi^0\omega$), $\bar{K}K$, ...
- described in terms of a **conformal polynomial** with cut starting at $\pi^0 \omega$ threshold

$$G_{\rm in}^N(s) = 1 + \sum_{k=1}^N c_k(z^k(s) - z^k(0))$$

• correct *P*-wave threshold behavior imposed

Result for $a_{\mu}^{\mathrm{HVP},\pi\pi}$ below 1 GeV

 \rightarrow Colangelo, Hoferichter, Stoffer, JHEP **02** (2019) 006

3

1 Introduction

- 2 Hadronic vacuum polarization
- 3 Two-pion contribution
- 4 Tension with lattice QCD

Tension with lattice QCD

 \rightarrow Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073

- implications of changing HVP?
- modifications at high energies affect hadronic running of $\alpha_{\rm QED}^{\rm eff}$ \Rightarrow clash with global EW fits

→ Passera, Marciano, Sirlin (2008), Crivellin, Hoferichter, Manzari, Montull (2020), Keshavarzi, Marciano, Passera, Sirlin (2020), Malaescu, Schott (2020)

 \rightarrow talk by A. Keshavarzi

- lattice studies point at region < 2 GeV
- ππ channel dominates

Result for $a_{\mu}^{\mathrm{HVP},\pi\pi}$ below 1 GeV

assumption: suppose all changes occur in $\pi\pi$ channel < 1 GeV $\Rightarrow a_{\mu}^{\text{total}}[\text{WP20}] - a_{\mu}^{2\pi,<1 \text{ GeV}}[\text{WP20}] = 197.7 \times 10^{-10}$

Tension with lattice QCD

 \rightarrow Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073

- force a different HVP contribution in VFF fits by including "lattice" datum with tiny uncertainty
- three different scenarios:
 - "low-energy" physics: $\pi\pi$ phase shifts
 - "high-energy" physics: inelastic effects, ck
 - all parameters free
- study effects on pion charge radius, hadronic running of $\alpha_{\rm QED}^{\rm eff}$, phase shifts, cross sections

Modifying $a_{\mu}^{\pi\pi}|_{\leq 1 \, {\rm GeV}}$

 \rightarrow Colangelo, Hoferichter, Stoffer, PLB **814** (2021) 136073

- "low-energy" scenario requires large local changes in the cross section in the ρ region
- "high-energy" scenario has an impact on pion charge radius and the space-like VFF ⇒ chance for independent lattice-QCD checks

Modifying $a_{\mu}^{\pi\pi}|_{\leq 1\,\mathrm{GeV}}$

Modifying $a_{\mu}^{\pi\pi}|_{\leq 1\,{\rm GeV}}$

Modifying $a_{\mu}^{\pi\pi}|_{\leq 1 \, {\rm GeV}}$

Modifying $a_{\mu}^{\pi\pi}|_{\leq 1 \, \text{GeV}}$

Tension with lattice QCD

Some insights from the window quantities

smooth window weight functions in Euclidean time

 \rightarrow Blum et al. [RBC/UKQCD] (2018)

- out of a_{μ} [BMWc] a_{μ} [WP20] $= 14.4 \times 10^{-10}$, maybe $6 7 \times 10^{-10}$ from intermediate window
- using form of weight functions and assuming rather uniform shifts in low-energy region: at least 5×10^{-10} from above 1 GeV

1 Introduction

- 2 Hadronic vacuum polarization
- 3 Two-pion contribution
- 4 Tension with lattice QCD

Summary

- long-standing discrepancy between BaBar/KLOE \Rightarrow wait for new e^+e^- data
- intriguing tension with BMWc \Rightarrow unitarity/analyticity enable independent checks via pion VFF and $\langle r_{\pi}^2 \rangle$
- window quantities and analyticity constraints point at an effect ≤ 9 × 10⁻¹⁰ below 1 GeV, ≥ 5 × 10⁻¹⁰ above 1 GeV