

Third order correction to the muon lifetime

16th International Workshop on Tau Lepton Physics

Matteo Fael | Sept. 27, 2021

INSTITUTE FOR THEORETICAL PARTICLE PHYSICS - KIT KARLSRUHE

in collaboration with K. Schönwald, M. Steinhauser, Phys.Rev.D 104 (2021) 016003

KIT - The Research University in the Helmholtz Association

Muon Decay

- Fundamental process to study weak interaction.
- Fermi Constant G_F extracted from muon lifetime

$$\frac{\hbar}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} F(\rho) \left[1 + H_1(\rho) \frac{\hat{\alpha}(m_{\mu})}{\pi} + H_2(\rho) \left(\frac{\hat{\alpha}(m_{\mu})}{\pi} \right)^2 + H_3(\rho) \left(\frac{\hat{\alpha}(m_{\mu})}{\pi} \right)^3 \right]$$

with $\rho = m_e/m_{\mu} \simeq 1/210$.

O(α) Behrends, Finkelstein, Sirlin Phys.Rev.101 (1956) 866.
 O(α²)

van Ritbergen, Stuart Phys.Rev.Lett. 82 (1999) 488 ($m_e = 0$) Czarnecki, Pak, Phys.Rev.Lett. 100 (2008) 241807 ($m_e \ll m_{\mu}$) O(α³) NEW

MF, Schönwald, Steinhauser, Phys.Rev.D 104 (2021) 016003 ($m_e \sim m_\mu$) parts of the calculation also confirmed in Czakon, Czarnecki, Dowling Phys.Rev.D 103 (2021) L111301.

Input Parameters of SM

Fine structure constant CODATA

$1/\alpha = 137.035\,999\,084\,(21)$ (0.15 ppb)

from a_e : 0.35 ppb Aoyama, Hayakawa, Kinoshita, Nio, PRL 109 (11) 111807 from h/m in ⁸⁷Rb: (0.08ppb) Morel, Yao, Cladé, Guellati-Khélifa, Nature 588 61

Fermi Constant

$$G_F = 1.1663787(6) \times 10^{-5} \text{ GeV}^{-2} (0.5 \text{ ppm})$$

Webber, et al., 2011, Phys.Rev.Lett.106, 041803; Phys.Rev.Lett.106, 079901

Z-boson mass

$M_Z = 91.1876 \pm 0.0021 \, \text{GeV} (23 \, \text{ppm})$

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) FCC-ee aims at improving M_Z by factor 400 (stat).

M. Fael Sept. 27 2021 TAU2021

Semileptonic **B** decays

Inclusive decays

•
$$\overline{B}
ightarrow X_c \ell ar{
u}$$
, with $X_c = D, D^*, D\pi, \dots$

The Heavy-Quark Expansion

Reviews: Benson, Bigi, Mannel, Uraltsev, Nucl.Phys. B665 (2003) 367; Dingfelder, Mannel, Rev.Mod.Phys. 88 (2016) 035008.

- **Γ***_i* are computed in **perturbative QCD**.
- Γ_0 : free-quark decay $b \rightarrow c \ell \nu$!
- The HQE parameters: $\mu_{\pi}, \mu_{G}, \rho_{D}, \rho_{LS} \sim \langle B | \mathcal{O}_{i}^{\bar{b}b} | B \rangle$
- HQE parameters are extracted from data or lattice.

quark-gluon cloud . **b** $p_b = m_b v + k$

$$\frac{\hbar}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} \left[X_0(\rho) + \sum_{n\geq 1} \left(\frac{\alpha}{\pi}\right)^n X_n(\rho) \right]$$

Possible strategies

- Exact result with m_{μ} and m_{e} only at $O(\alpha)$. Nir, Phys.Lett.B 221 (1989) 184
- Set $m_e = 0$ ($m_c = 0$). van Ritbergen, Stuart
- Approximation exploiting $m_e < m_\mu$

 $(m_c < m_b)$. Czarnecki, Pak

Computational Method

$$\frac{\hbar}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} \left[1 - 8\rho^2 - 12\rho^4 \log(\rho^2) + 8\rho^6 - \rho^8 \right]$$

where $\rho = m_e/m_\mu$.

- Optical theorem.
- Multi-loop diagrams with two scales m_e and m_µ.
- Use method of regions:

Beneke, Smirnov, NPB 522 (1998) 321; Smirnov, Springer Tracts Mod. Phys. 177

- Expansion in $\rho = m_e/m_\mu$ (or $\rho = m_c/m_b$). Obvious choice, too difficult to extend at $O(\alpha^3)$.
- Expansion in $\delta = 1 m_e/m_\mu$ (or $\delta = 1 m_c/m_b$) Crucial decoupling and simplifications of loop integrals.

7

e

A toy example

$$F(m,M,\varepsilon) = \int_0^\infty dk \frac{k^{-\varepsilon}}{(k+m)(k+M)} \stackrel{\varepsilon \to 0}{=} \frac{\log(M/m)}{M-m} = \frac{\log(M/m)}{M} \sum_{n=0}^\infty \left(\frac{m}{M}\right)^n$$

When k is a hard scale O(M)

$$F_{\rm h}(m,M,\varepsilon) = \int_0^\infty dk \frac{k^{-\varepsilon}}{(k+M)} \left[\frac{1}{k} - \frac{m}{k^2} + \ldots\right] \stackrel{\varepsilon \to 0}{=} \left[-\frac{1}{\varepsilon M} + \frac{\log M}{M}\right] \sum_{n=0}^\infty \left(\frac{m}{M}\right)^n$$

k is a soft scale O(m)

$$F_{\rm s}(m,M,\varepsilon) = \int_0^\infty dk \frac{k^{-\varepsilon}}{(k+m)} \left[\frac{1}{M} - \frac{k}{M^2} + \ldots \right] \stackrel{\varepsilon \to 0}{=} \left[\frac{1}{\varepsilon M} - \frac{\log m}{M} \right] \sum_{n=0}^\infty \left(\frac{m}{M} \right)^n$$

M. Fael Sept. 27 2021 TAU2021

Muon lifetime at tree level

$$\begin{split} \Gamma_{\mu} &= \Gamma^{(\mathrm{hh})} + \Gamma^{(\mathrm{ss})} + \Gamma^{(\mathrm{hs})} + \Gamma^{(\mathrm{sh})} \\ &= \Gamma_0 \Big[1 - 8\rho^2 - 12\rho^4 \log(\rho^2) + 8\rho^6 - \rho^8 \Big] \\ \text{where } \rho &= m_e/m_{\mu} \text{ and } \Gamma_0 = \frac{G_F^2 m_{\mu}^5}{192\pi^3} \\ &\Gamma^{(\mathrm{hh})} \sim -\frac{\rho^4}{12\varepsilon} - 24\rho^4 \log\left(\frac{\mu^2}{m_{\mu}^2}\right) + 1 - 8\rho^2 - 24\rho^4 + 16\rho^6 - 2\rho^8 \\ &\Gamma^{(\mathrm{hs})} \sim +\frac{\rho^4}{12\varepsilon} + 24\rho^4 \log\left(\frac{\mu^2}{m_{\mu}^2}\right) - 12\rho^4 \log(\rho^2) + 24\rho^4 - 8\rho^6 + \rho^8 \\ &\Gamma^{(\mathrm{ss})} &= \Gamma^{(\mathrm{sh})} = 0 \end{split}$$

M. Fael Sept. 27 2021 TAU2021

Second order corrections

$$\frac{\hbar}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} \left[X_0 + \frac{\alpha}{\pi} X_1 + \left(\frac{\alpha}{\pi}\right)^2 X_2 + \dots \right]$$

Czarnecki, Pak, PRD 78 (2008) 114015; PRL 100 (2008) 241807.

- Four-loop diagrams, all loop momenta can scale hard (m_{μ}) or soft (m_e) .
- Each diagram considered up to 11 different regions.
- The *all-hard* region reduces to **33 four-loop master integrals**.

• Expansion depth:
$$O(
ho^7)$$
 ($ho=m_e/m_\mu$).

Towards the third order corrections

	α_{s}^{2}		$lpha_{\pmb{s}}^{\pmb{3}}$
n. diagrams	62	\rightarrow	1450
n. loops	4	\rightarrow	5
regions	11	\rightarrow	O(20)
expansion depth	7	\rightarrow	?
master integrals	33	\rightarrow	?

The heavy daughter limit

Dowling, Piclum, Czarnecki, PRD 78 (2008) 074024

Is the most natural expansion parameter sometimes also the best one?

$$rac{m_e}{m_\mu} \sim rac{1}{210} \qquad rac{m_c}{m_b} \sim 0.3$$

• Perform the expansion in the limit $m_e \sim m_\mu$ ($m_c \sim m_b$):

$$\delta = \mathbf{1} - \rho = \mathbf{1} - \frac{m_{e}}{m_{\mu}} \ll \mathbf{1}$$

• The width must behave in the the $m_e
ightarrow m_\mu$ limit as:

$$\Gamma_{\mu} \stackrel{m_e o m_{\mu}}{\simeq} rac{G_F^2}{192 \pi^3} (m_{\mu} - m_e)^5 = rac{G_F^2 m_{\mu}^5}{192 \pi^3} \delta^5$$

M. Fael Sept. 27 2021 TAU2021

Dowling, Piclum, Czarnecki, PRD 78 (2008) 074024

Muon Lifetime Reloaded

$$\Gamma_{\mu} = \Gamma^{(hh)} + \Gamma^{(ss)} + \Gamma^{(sh)} + \Gamma^{(hs)}$$

 $= \Gamma_0 \left[\frac{64}{5} \delta^5 - \frac{96}{5} \delta^6 + \frac{288}{35} \delta^7 + \dots \right]$
where $\rho = m_e/m_\mu$ and $\Gamma_0 = \frac{G_F^2 m_\mu^5}{192\pi^3}$

- Crucial simplifications in the heavy daughter limit!
- At least one electron's propagator must scale *soft* to generate an imaginary part log(-δ).
- Much smaller number of regions, e.g. $\Gamma^{(hh)} = \Gamma^{(sh)} = \Gamma^{(hs)} = 0$

Divide et Impera

- The heavy daughter limit converts 5 loops → 3 loops!
- Loop integrals associated to ν and $\bar{\nu}$ momenta decouple and are integrated analytically at once.
- Explanation is rather technical, connected to the appearance of linear propagators:

$$\frac{1}{(p+k)^2 - m_c^2} \rightarrow \frac{1}{2p \cdot k - \delta}$$

	scaling	n. regions
$\mathcal{O}(\alpha)$	h, u	2
$\mathcal{O}(\alpha^2)$	hh , hu, uu	4
$\mathcal{O}(\alpha^3)$	hhh, uuu, huu, hhu	8

Computational Challenges

- 1450 five-loop diagrams.
- Several subtleties with FORM
 - Propagators expanded up to 10th 12th order.
 - Major obstacle is to keep as small as possible the size of intermediate expressions.
 - Efficient expansion of propagators and memory management.
- Intermediate FORM expressions up to O(100) GB.
- Master integrals:
 - O(α²): 3 (ss) and 3 (hh).
 - O(α³): 20 (sss) and 19 (hhh).
 Melnikov, van Ritbergen, Nucl.Phys.B 591 (2000) 515;
 MF, Schönwald, Steinhauser, Phys.Rev.Lett. 125 (2020) 5.
- Renormalization constants at 3 loops with two massive fermions.

MF, Schönwald, Steinhauser, JHEP 10 (2020) 087.

$$\frac{\hbar}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} \left[X_0 + \sum_{n \ge 1} \left(\frac{\hat{\alpha}(m_{\mu})}{\pi} \right)^n X_n \right]$$

• NEW: X_3 up to δ^{12} (first 8 terms).

$$X_3 = \sum_{m \ge 5} x_{3,m} \delta^m = \delta^5 \left[\frac{256}{3} a4 - 128\zeta(5) + \frac{56}{5} \pi^2 \zeta_3 + \frac{1984}{45} \zeta_3 + \frac{452}{675} \pi^4 - \frac{3652}{405} \pi^2 \right]$$

$$-\frac{18451}{270} + \frac{32}{9}\log^4(2) - \frac{352}{45}\pi^2\log^2(2) - \frac{32}{45}\pi^2\log(2)\right] + O(\delta^6)$$

MF, Schönwald, Steinhauser, Phys.Rev.D 104 (2021) 016003

confirmed C_F^3 , $C_F^2 N_H$ and $C_F N_H^2$ color factors up to δ^9 Czakon, Czarnecki, Dowling, Phys.Rev.D 103 (2021) L111301

・ロト ・ 日 ・ モ = ・ ・ モ ・ ・ モ ・ つ へ ()

+ロ> + 母> + 注> + 注> 注 の へ ()

 $X_3^{\mu} = -15.3 \pm 2.3$ (15%)

MF, Schönwald, Steinhauser, Phys.Rev.D 104 (2021) 1, 016003

Previous estimate: $X_3^{\mu} \simeq -20$

Sac

Ferroglia, Ossola, Sirlin, Nucl.Phys.B 560 (1999) 23

Theoretical uncertainties

order	X_n/X_{exact}	$x_{n,12}/X_n$
α	0.96	0.6 %
α^2	0.92	1.0%
α^3	\sim 0.85	1.8 %

Final Error Budget

$$egin{aligned} &rac{\hbar}{ au_{\mu}}=rac{G_F^2m_{\mu}^5}{192\pi^2}m{F}(
ho)\left(1+\Delta q
ight)\ \Delta q=-(4\,234\,530|_{\hatlpha}+36\,332|_{\hatlpha^2}+200|_{\hatlpha^3}\pm29|_{\delta\hatlpha^3}\pm11|_{\delta\mathrm{had}}) imes10^{-9} \end{aligned}$$

•
$$\delta(1 + \Delta q) = 0.031 \text{ ppm}$$

• $\frac{1}{2} \frac{\delta \tau_{\mu}}{\tau_{\mu}} = 0.5 \text{ ppm}$
• $\frac{5}{2} \frac{\delta m_{\mu}}{m_{\mu}} = 0.05 \text{ ppm}$

- at $O(\alpha^2)$: $\delta(1 + \Delta q) = 0.17$ ppm van Ritbergen, Stuart, Nucl.Phys.B 564 (2000) 343 Sirlin, Ferroglia, Rev.Mod.Phys. 85 (2013) 1
- Precise $\overline{\rm MS}\text{-}{\rm on}$ shell conversion of α up to 4 loops

Baikov, Chetyrkin, Kuhn, Sturm, Nucl.Phys.B 867 (2013) 182

Lessons for $B ightarrow X_c \ell u$

$$m_b^{\text{OS}} : m_c^{\text{OS}} \quad 1 - 1.78 \left(\frac{\alpha_s}{\pi}\right) - 13.1 \left(\frac{\alpha_s}{\pi}\right)^2 - 163.3 \left(\frac{\alpha_s}{\pi}\right)^3$$
$$\overline{m}_b(\overline{m}_b) : \overline{m}_c(3 \text{ GeV}) \quad 1 + 3.07 \left(\frac{\alpha_s}{\pi}\right) + 13.3 \left(\frac{\alpha_s}{\pi}\right)^2 + 62.7 \left(\frac{\alpha_s}{\pi}\right)^3$$
$$m_b^{\text{kin}}(1 \text{ GeV}) : \overline{m}_c(2 \text{ GeV}) \quad 1 - 1.24 \left(\frac{\alpha_s}{\pi}\right) - 3.65 \left(\frac{\alpha_s}{\pi}\right)^2 - 1.0 \left(\frac{\alpha_s}{\pi}\right)^3$$

1

Improvement in $|V_{cb}|$

- Fit BR and moments from *B* factories
- Global fit strategy from 2014
 Gambino, Schwanda, Phys.Rev.D 89 (2014) 014022
 Alberti, Gambino, Healey, Nandi, Phys.Rev.Lett. 114 (2015) 6, 061802
- $O(\alpha_s^3)$ semileptonic width
- $O(\alpha_s^3)$ relation between $\overline{m}_b m_b^{kin}$ MF, Schönwald, Seinhauser, Phys.Rev.Lett. 125 (2020) 052003; Phys.Rev.D 103 (2021) 1, 014005

Precise input from lattice

 $ar{m}_c(3 \ {
m GeV}) = 0.988 \, (7) \ {
m GeV}$ $ar{m}_b(ar{m}_b) = 4.198 \, (12) \ {
m GeV}$ $\longrightarrow m_b^{
m kin} = 4.56 \, (19) \ {
m GeV}$

FLAG2019

$$egin{aligned} |V_{cb}| &= 42.16\,(30)_{
m th}(32)_{
m exp}(25)_{\Gamma} imes10^{-3} \ &= 42.16\,(50) imes10^{-3} \end{aligned}$$

Bordone, Capdevila, Gambino, hep-ph/2107.00604 error improvement of 34% compared to 2014.

Conclusions

- QED $O(\alpha^3)$ to the muon lifetime
- QCD α_s^3 corrections to $\Gamma(b \to X_c \ell \nu)$.
- Heavy daughter limit: small parameter $\delta = 1 m_e/m_\mu$ and $\delta = 1 m_c/m_b$.
- $\Delta q^{(3)}$ with relative 15% uncertainty. Theory error on Δq reduced to 0.03 ppm.
- 1% theory uncertainty in semileptonic decays width.
- Improved extraction of $|V_{cb}|$ inclusive by about 34%.