Precision measurements on dipole moments of the τ and hadronic multi-body final states

Fabian Krinner, Stephan Paul

Max Planck Institut für Physik

MAX-PLANCK-GESELLSCHAFT

TAU2021

τ dipole moments

• Coupling of τ^{\pm} to photons via: $\bar{v}_{\tau^{+}}\Gamma^{\mu}(q^{2})u_{\tau^{-}}$ with

$$\Gamma^{\mu}(q^{2}) = -ieQ_{\tau} \left[\gamma^{\mu}F_{1}(q^{2}) + \frac{\sigma^{\mu\nu}q_{\nu}}{2m_{\tau}} \left(iF_{2}(q^{2}) + F_{3}(q^{2})\gamma^{5} \right) \right]$$

• $F_1(q^2)$ Dirac form factor $F_1(0) = 1$

- $F_2(q^2)$ Pauli form factor *MDM* $F_2(0) = a_{\tau}$
- $F_3(q^2)$: EDM: $F_3(0) = d_{\tau} \frac{2m_{\tau}}{eQ_{\tau}}$
- Neither shown nor discussed $F_4(q^2)$ anapole moment

S. Eidelman, D. Epifanov, M. Fael, L. Mercolli, M. Passera, arXiv:1601.07987

Pair production

$$e^- + e^+ \to \tau^- + \tau^+$$

• Disclaimer $F_{2/3}(q^2 = E_{CM}^2 = m_{\Upsilon(4S)}^2)$, not actual dipole moments

Production described by spin-density matrix

$$\chi_{\lambda_{-}\lambda_{+},\lambda_{-}'\lambda_{+}'} = \chi_{\lambda_{-}\lambda_{+},\lambda_{-}'\lambda_{+}'}^{\mathsf{SM}} + \sum_{\mathbf{x} \in \{\Re/\Im(F_{2/3})\}} \mathbf{x} \cdot \chi_{\lambda_{-}\lambda_{+},\lambda_{-}'\lambda_{+}'}^{\mathbf{x}}$$

- Dipole moments alter spin-correlation of τ^{\pm} -pair
- Access via angular distributions of decay products

Spin-density matrix contracted with decay modes

$$\mathcal{M}^{2} = \sum_{\lambda_{\pm}^{(\prime)}} \chi_{\lambda_{-}\lambda_{+},\lambda_{-}^{\prime}\lambda_{+}^{\prime}} D_{\lambda_{-}\lambda_{-}^{\prime}}^{-} D_{\lambda_{+}\lambda_{+}^{\prime}}^{+}$$

Construct optimal observables

$$\mathcal{M}^{2} = \mathcal{M}^{2}_{\mathsf{SM}} + \sum_{\mathbf{x} \in \{\Re/\Im(F_{2/3})\}} \mathbf{x} \cdot \mathcal{M}^{2}_{\mathbf{x}} \quad \Rightarrow \quad \mathrm{OO}_{\mathbf{x}} = \frac{\mathcal{M}^{2}_{\mathbf{x}}}{\mathcal{M}^{2}_{\mathsf{SM}}}$$

● Get ℜ/ℑ(F_{2/3}) from expectation value of data set

 $\langle \mathrm{OO}_{\textbf{\textit{x}}} \rangle_{\text{data}} \propto \textbf{\textit{x}}$

Optimal observables appear also naturally in a log L fit

M. Diehl and O. Nachtmann, Z. Phys.C62(1994) 397412

Fabian Krinner, Stephan Paul (MPP)

• First: Only 1 × 1 topologies:
$$\tau \to \{\pi\nu; \rho\nu; \mu\nu\overline{\nu}; e\nu\overline{\nu}\}$$

• Similar resolution for all 16 combinations (10⁶ events):

$$\begin{split} &\delta\Re(F_2) = 7.0\times 10^{-4};\\ &\delta\Im(F_2) = 7.2\times 10^{-4};\\ &\delta\Re(F_3) = 9.3\times 10^{-4};\\ &\delta\Im(F_3) = 5.2\times 10^{-4} \end{split}$$

- However: Escaping neutrino carries away kinematic information
 - Always: Average over two-fold ambiguity
 - ► For every leptonic decay:

$$\int \mathcal{M}^2 \mathrm{d}\phi \mathrm{d}\cos\theta \mathrm{d}m_{\nu\nu}^2$$

Optimal observables Missing information

-

$ au^- \operatorname{mode}$	$ au^+$ mode	$X_{\delta\Re(F_2)}$	$X_{\delta\Im(F_2)}$
$\pi^- \nu_{\tau}$	$\pi^+ \bar{\nu}_{\tau}$	1.09	1.60
$\pi^- \nu_{\tau}$	$ ho^+ \bar{ u}_{ au}$	1.11	1.19
$\pi^- \nu_{\tau}$	$e^+ \bar{\nu}_\tau \nu_e$	2.07	1.75
$\pi^- \nu_{\tau}$	$\mu^+ ar{ u}_ au u_\mu$	2.06	1.72
$\rho^- \nu_{\tau}$	$\pi^+ \bar{\nu}_{\tau}$	1.11	1.19
$\rho^- \nu_{\tau}$	$ ho^+ \bar{ u}_{ au}$	1.11	1.26
$\rho^- \nu_{\tau}$	$e^+ \bar{\nu}_\tau \nu_e$	2.03	1.79
$\rho^- \nu_{\tau}$	$\mu^+ ar{ u}_ au u_\mu$	2.04	1.79
$e^- \nu_\tau \bar{\nu}_e$	$\pi^+ \bar{ u}_{ au}$	2.09	1.81
$e^- \nu_\tau \bar{\nu}_e$	$ ho^+ \bar{ u}_{ au}$	2.03	1.75
$e^- \nu_\tau \bar{\nu}_e$	$e^+ \bar{\nu}_\tau \nu_e$	3.45	2.28
$e^- \nu_\tau \bar{\nu}_e$	$\mu^+ \bar{ u}_{ au} u_{\mu}$	3.73	2.28
$\mu^- u_ au \overline{ u}_\mu$	$\pi^+ \bar{\nu}_{\tau}$	2.07	1.79
$\mu^- u_{ au} \overline{ u}_{\mu}$	$ ho^+ ar u_ au$	2.03	1.72
$\mu^- u_{ au} \overline{ u}_{\mu}$	$e^+ \bar{\nu}_\tau \nu_e$	5.83	2.28
$\mu^- u_ au \overline{ u}_\mu$	$\mu^+ \bar{ u}_ au u_\mu$	3.11	2.32

Correlations of ambiguous solutions $\pi^{-\nu \times \pi^{+}\overline{\nu}}$

Fabian Krinner, Stephan Paul (MPP)

Additional hadronic channels

- Hadronic decays give best resolution
- Next highest branching fraction:

$$\tau^{\pm} \rightarrow 3\pi^{\pm} + \nu$$

• Branching: $9.02 \pm 0.05\%$

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update.

Decay spin-density matrix

$$\mathcal{D}_{\lambda\lambda'} = \mathcal{A}^*_\lambda \mathcal{A}_{\lambda'}$$
 with $\mathcal{A}_\lambda \propto ar{u}_
u \gamma_\mu (1-\gamma^5) u^\lambda_ au J^\mu_{\mathsf{had}} = \ell^\lambda_\mu J^\mu_{\mathsf{had}}$

• For π and ρ

$$oldsymbol{J}^{\mu}_{\pi} \propto oldsymbol{
ho}^{\mu}_{\pi}; \quad oldsymbol{J}^{\mu}_{
ho} \propto \mathsf{BW}_{
ho} \left(oldsymbol{s}_{\pi\pi^0}
ight) \left(oldsymbol{
ho}^{\mu}_{\pi} - oldsymbol{
ho}^{\mu}_{\pi^0}
ight)_{\perp}$$

• \Rightarrow $3\pi^{\pm}$: Model necessary

Dipole moments with wrong hadronic current

• Use hadronic model inspired by COMPASS

C. Adolph et al. [COMPASS], Phys. Rev. D 95 (2017) no.3, 032004 doi:10.1103/PhysRevD.95.032004 [arXiv:1509.00992 [hep-ex]].

• Generate toy data sets for $3\pi^{\pm}\nu \ imes \pi^{+} \bar{
u}$ for

 $\Re/\Im(F_{2/3}) = 0.01$

- Analyze with pure $a_1 \left[\rho \pi \right]_S$ model
 - Model overlap 78%
- Resulting values

 $\Re(F_2) = 0.0528 \pm 0.0005; \quad \Im(F_2) = 0.0109 \pm 0.0005$

 $\Re(F_3) = 0.0090 \pm 0.0007; \quad \Im(F_3) = 0.0079 \pm 0.0003$

• \Rightarrow 3 π^{\pm} : good model necessary

- Learn $\tau \rightarrow 3\pi + \nu$ amplitude from data
 - Perform amplitude analysis

$$J^{\mu}_{\mathsf{had}} = \sum_{i \in \mathsf{waves}} c_i j^{\mu}_i(p_1, p_2, p_3)$$

- Free complex-valued coefficients c_i
- Specific dependence on the phase-space variables j_i^µ(p₁, p₂, p₃)

Isobar model

- Possible formulation: isobar model
- Waves given by:
 - Three pion state X⁻
 - ► Known J^{PC} quantum numbers
 - Decays to isobar ξ^0 and π
 - ► Also known J^{PC}
 - Orbital angular momentum L
- Alternative non-isobaric waves (e.g. chiral models or combinations)

- Partial-wave current: f.s. π_1^+ , π_2^- , $\pi_3^- \Rightarrow p_1^\mu$, p_2^μ , and p_3^μ
 - ► $a_1[\rho\pi]_S$
- Angular momenta encoded in:

$$\Xi_{i}^{\mu} = \left(\eta^{\mu\nu} - \frac{p_{123}^{\mu}p_{123}^{\nu}}{p_{123}^{2}}\right) \left(p_{1} - p_{i}\right)_{\nu}$$

Bose symmetrization

$$j^{\mu}_{[\rho\pi]_{S}} = \mathsf{BW}_{a_{1}}(s_{123}) \left(\mathsf{BW}_{\rho}(s_{12})\Xi^{\mu}_{2} + \mathsf{BW}_{\rho}(s_{13})\Xi^{\mu}_{3}\right)$$

Dynamic amplitudes BW(s)

F. Krinner and S. Paul,[arXiv:2107.04295 [hep-ph]].

a_1 resonances

M. Aghasyan et al. [COMPASS], Phys. Rev. D 98 (2018) no.9, 092003 doi:10.1103/PhysRevD.98.092003 [arXiv:1802.05913 [hep-ex]].

C. Adolph et al. [COMPASS], Phys. Rev. Lett. 115 (2015) no.8, 082001 doi:10.1103/PhysRevLett.115.082001 [arXiv:1501.05732 [hep-ex]].

a₁(1260)
PDG:

$$m_{
m a_1} = 1,230 \pm 40\,{
m MeV}/c^2$$

$$\Gamma_{\rm a_1} = 250 - 600 \, {\rm MeV}/c^2$$

• a₁(1420)

- Possible explanations:
 - Resonance
 - Triangle singularity
 - Interference with non-resonant processes

Form factors $F_{2/3}$ with improved hadronic model

Improve overlap to 95%

 $\Re(F_2) = 0.0180 \pm 0.0005; \quad \Im(F_2) = 0.105 \pm 0.0005$

 $\Re(F_3) = 0.0104 \pm 0.0006; \quad \Im(F_3) = 0.0099 \pm 0.0003$

Overlap to 99%

 $\Re(F_2) = 0.0116 \pm 0.0005; \quad \Im(F_2) = 0.0098 \pm 0.0005$

 $\Re(F_3) = 0.0097 \pm 0.0006; \quad \Im(F_3) = 0.0102 \pm 0.0003$

- Good hadronic model can recover F₃
- S(F₂) not largely affected
- $\Re(F_2)$ critical

- Measure the τ form factors F_2 and F_3 in τ -pair events
 - Kinematic distribution of the decay products
- Missing neutrino kinematics:
 - Hadronic events give better resolution
- 3rd largest hadronic mode: $\tau \rightarrow 3\pi^{\pm} + \nu_{\tau}$
- Dipole moments need proper hadronic model
- Amplitude analysis of $au
 ightarrow 3\pi +
 u_{ au}$
 - E.g. PWA in the isobar model
 - ▶ a₁(1260), a₁(1420)
- F_3 and $\Im(F_2)$ can be improved
 - $\Re(F_2)$ too sensitive on hadronic model