

Measuring hadronic corrections to the muon g-2 at BESIII

Precision Physics, Fundamental Interactions and Structure of Matter

September 30, 2021 Achim Denig Johannes Gutenberg University Mainz

EXPERIMENT *at the tau-charm Factory BEPC-II*

World's by far largest τ -charm dataset in e^+e^- annihilation:

- Symmetric e^+e^- collider
- Located at the BEPCII collider (Beijing, China)
- CMS energy: 2 GeV to 5 GeV
- Maximum luminosity: $1 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$
- 93% coverage of the solid angle

3

Uncertainty: dominated by strong interactions

- Hadronic Vacuum Polarization ($693.1 \pm 4.0 \cdot 10^{-10}$) - Hadronic Light-by-Light ($9.2 \pm 1.8 \cdot 10^{-10}$)

Physics Reports 887 (2020) 1-166

talk Colangelo

4

Hadronic Vacuum Polarization (HVP)

$$a_{\mu}^{HVP} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \ K(s) \ \boldsymbol{\sigma}_{had}(s)$$

 $\sigma_{had}(s) = \sigma_{tot}(e^+e^- \rightarrow \text{Hadrons})$ relevant mass range < 2...3 GeV

Contributions to HVP

e⁺ H_{rad} γ_{ISR} E_{CM} M_{hadr} e⁻ Hadrons

- High statistics thanks to high luminosity
- Precise knowledge of radiative corrections
- Large angle (LA) and small angle (SA) ISR analyses

- + exclusive reconstruction
- increased background
- reduced statistics
- + mass range $\sqrt{s'} < E_{CM}$

- cut on angle of missing momentum
- + reduced background
- + very high statistics (x5)
- mass range $E_{th} < \sqrt{s'} < E_{CM}$ (BESIII: E_{th} = ~1 GeV)

Achim Denig

0.80

0.85

0.90

5

CMD-2 03,06

SND 04

BaBar 09

BESIII 16

CLEO 18

KLOE 18

385

380

superseded by this work

avg. of KLOE 08/10/12

BESIII (This work)

390

0.60

0.70

 372.4 ± 3.0

 371.7 ± 5.0

 376.7 ± 2.7

 376.9 ± 6.3

 366.9 ± 2.1

395

 $368.2 \pm 2.5 \pm 3.3$

 $368.2 \pm 1.5 \pm 3.3$

400

0.65

0.75

 $\sqrt{s'}$ [GeV]

BESIII Analysis $e^+e^- \rightarrow \pi^+\pi^-\gamma_{ISR}$

405

8

 BESIII aims for new two-pion analysis with precision goal of 0.5% (tagged analysis)

 BESIII aims for an improved measurement of the mass range above 1 GeV (untagged analysis)

Hadronic Light-by-Light Contribution (HLbL)

Data-driven approach!

Exp. Input: Transition Form Factors TFF F(Q²) momentum transfer Q² below ~ 2 GeV²

Estimate of (g-2) Theory Initiative: (9.2 ± 1.8) $\cdot 10^{-10}$ was (10.5 ± 2

was (10.5 ± 2.6) $\cdot 10^{-10}$

HLbL and Impact of BESIII Data

- Uncertainties for pseudoscalar and π − box contributions significantly reduced
 → Validate theoretical TFFs with unique BESIII data set!
- Currently, axial vector, scalar, and tensor contributions together with short distance contributions limiting overall accuracy

→ BESIII measurements of axial vector, scalar, and tensor TFFs

In very many cases no previous TFF measurements for $Q^2 < 2 \text{ GeV}^2$.

Physics Reports 887 (2020) 1-166

Two-Photon Physics Programme at BESIII

Selection criteria

- 1 electron (positron) detected
- 1 positron (electron) along beam axis
- Meson fully reconstructed
- \rightarrow cut on angle of missing momentum

Momentum transfer

- tagged: Q² = -q₁² = -(p p')²
 → Highly virtual photon
- untagged: q² = -q₂² ~ 0 GeV²
 → Quasi-real photon

EKHARA event generator

$$Q^2 = 4 \cdot E \cdot E' \cdot \sin^2(\theta/2)$$

BES III Analysis: $\gamma \gamma^* \to \pi^0$

PPNP107 (2019) 20

PPNP107 (2019) 20

- $\sqrt{s}_{\text{BESIII}} = 3.77 \text{ GeV}$, L= 2.9/fb
- Unprecedented accuracy of BESIII
- Relevant Q² range for HLbL
- → Very good agreement with recent dispersive analysis and of Lattice QCD calculation
- Q² range below 0.3 GeV² accessible at BESIII with data from lower c.m. energy

similar results for η and η' TFFs

- Transition form factor for process $\gamma \gamma^* \rightarrow \pi^+ \pi^-$ never measured before; only untagged measurements with Q²=0 GeV² existing
- BESIII aims for:
 - first TFF measurement in Q² range 0.1 ... 3 GeV² in single-tag analysis
 - full coverage of the mass range up to 2 GeV
 - full coverage of the helicity angle
- Analysis in a very advanced state (7/fb):
 - 7/fb of data at cms energies \geq 3.77 GeV
 - construction of MC generator Ekhara (H. Czyz)
 - detailed phenomenology program @ Mainz
 - subtraction of background channels !

Upcoming BES III Analysis $\gamma \gamma^* \rightarrow f_1(1285) \rightarrow \pi^+ \pi^- \eta$

- Design study recently completed
 - single-tag analysis
 - $-f_{1(1285)} \rightarrow \pi^+\pi^-\eta \ (\eta \rightarrow \gamma\gamma)$
 - 10/fb of data at cms energies > 4 GeV
- **BESIII** aims for:
 - TFF measurement in Q² range 0.24 ... 3 GeV²
 - separation of LT and TT contribution by means of helicity angle
 - improved accuracy wrt. existing L3/LEP data

In addition investigations of higher lying states in preparation (different decay channels)

Conclusions and Outlook

<mark>€€S</mark>∭]G|U

- BESIII program of hadronic cross section measurements relevant for HVP
 - $e^+e^- \rightarrow \pi^+\pi^-$ (1% total uncertainty)
 - $-e^+e^- \rightarrow \pi^+\pi^-\pi^0$
 - $-e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$
 - upcoming new measurement of R_{incl} between 2.0 3.7 GeV (3% error)
- New ongoing analysis of channel $e^+e^- \rightarrow \pi^+\pi^-$ with goal to reach 0.5% total accuracy
- BESIII has a program of γγ measurements relevant for HLbL
 - $\gamma\gamma^* \rightarrow \pi^0$, η , η' (unprecedented accurcy at low Q²)
 - $-\gamma\gamma^* \rightarrow \pi^+\pi^-$ (first TFF measurem. ever, cover full M_{$\pi\pi$})
 - $-\gamma\gamma^* \rightarrow \pi^0\pi^0/\pi^0\eta$ (first TFF measurem. at low Q²)
 - $\ -\gamma\gamma^*\to f_1(1285),\ldots$
 - double virtual TFFs
- Most results based so far on data set of 2.9/fb taken at 3.77 GeV
 → 20/fb of data at 3.77 GeV upcoming (2022) + ~20/fb > 4 GeV
- Preparation of a small angle tagger for improved ISR and γγ analyses

crystal Zero Degree Detector